Last active
August 29, 2015 14:23
-
-
Save zmjones/63d21d0308752755a3ae to your computer and use it in GitHub Desktop.
partial dependence for supervised methods
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(mlr) | |
library(checkmate) | |
fr = train("regr.rpart", bh.task) | |
dr = generatePartialPredictionData(fr, getTaskData(bh.task), c("lstat", "chas")) | |
plotPartialPrediction(dr, facet = "chas") | |
fc = train("classif.rpart", iris.task) | |
dc = generatePartialPredictionData(fc, getTaskData(iris.task), c("Petal.Width", "Petal.Length"), | |
function(x) table(x) / length(x)) | |
plotPartialPrediction(dc, facet = "Petal.Length") | |
fcp = train(makeLearner("classif.rpart", predict.type = "prob"), iris.task) | |
dcp = generatePartialPredictionData(fcp, getTaskData(iris.task), c("Petal.Width", "Petal.Length")) | |
plotPartialPrediction(dcp, facet = "Petal.Length") | |
fs = train("surv.coxph", wpbc.task) | |
ds = generatePartialPredictionData(fs, getTaskData(wpbc.task), c("pnodes", "worst_radius")) | |
plotPartialPrediction(ds, facet = "worst_radius") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
generatePartialPredictionData = function(obj, data, features, fun = mean, | |
resample = NULL, fmin = NULL, fmax = NULL, | |
gridsize = 10L, ...) { | |
assertClass(obj, "WrappedModel") | |
td = obj$task.desc | |
rng = lapply(features, function(x) generateFeatureGrid(x, data, resample, fmin, fmax, gridsize)) | |
rng = as.data.frame(rng) | |
if (length(features) > 1L) | |
rng = expand.grid(rng) | |
ppred = lapply(1:nrow(rng), function(x) { | |
data[features] = rng[x, ] | |
pred = do.call("predict", c(list("object" = obj, "newdata" = data), list(...)))$data | |
if (obj$learner$predict.type == "response") { | |
fun(pred$response) | |
} else { | |
cols = lapply(td$class.levels, function(x) grepl(x, colnames(pred))) | |
cols = apply(do.call("rbind", cols), 2, any) | |
apply(pred[, cols], 2, fun) | |
} | |
}) | |
ppred = as.data.frame(do.call("rbind", ppred)) | |
if (td$type %in% c("regr", "surv")) { | |
target = td$target | |
} else { | |
assert(ncol(ppred) == length(td$class.levels)) | |
target = td$class.levels | |
} | |
data = cbind(ppred, rng) | |
if ((ncol(ppred) == 1L & td$type == "regr") | td$type == "classif") | |
colnames(data) = c(target, features) | |
else if (ncol(ppred) == 3L & td$type == "regr") { | |
colnames(data) = c("lower", target, "upper", features) | |
assert(all(data$lower < data[[target]] & data[[target]] < data$upper)) | |
} else { | |
assert(td$type == "surv") | |
assert(ncol(ppred) == 1L) | |
colnames(data) = c("risk", features) | |
} | |
makeS3Obj("PartialPredictionData", | |
data = data, | |
task.desc = td, | |
target = target, | |
features = features) | |
} | |
print.PartialPredictionData = function(x, ...) { | |
catf("PartialPredictionData") | |
catf("Task: %s", x$task.desc$id) | |
catf("Featuress: %s", paste(x$features, collapse = ", ")) | |
catf("Target: %s", paste(x$target, collapse = ", ")) | |
print(head(x$data)) | |
} | |
plotPartialPrediction = function(obj, facet = NULL) { | |
assertClass(obj, "PartialPredictionData") | |
assert(length(obj$features) <= 2L) | |
bounds = all(c("lower", "upper") %in% colnames(obj$data)) | |
if (!is.null(facet)) { | |
assert(facet %in% obj$features & length(obj$features) > 1L) | |
feature = obj$features[which(obj$features != facet)] | |
if (!is.factor(obj$data[[facet]])) | |
obj$data[[facet]] = paste(facet, "=", as.factor(signif(obj$data[[facet]], 2)), sep = " ") | |
else | |
obj$data[[facet]] = paste(facet, "=", obj$data[[facet]]) | |
} else { | |
feature = obj$features | |
facet = NULL | |
} | |
if (obj$task.desc$type == "surv") | |
target = "risk" | |
else | |
target = obj$target | |
if (all(target %in% obj$task.desc$class.levels)) { | |
out = reshape2::melt(obj$data, id.vars = obj$features, variable = "Class", value.name = "Probability") | |
out$Class = gsub("^prob\\.", "", out$Class) | |
plt = ggplot2::ggplot(out, ggplot2::aes_string(feature, "Probability", color = "Class")) | |
} else { | |
plt = ggplot2::ggplot(obj$data, ggplot2::aes_string(feature, target)) | |
} | |
plt = plt + ggplot2::geom_point() + ggplot2::geom_line() | |
if (bounds) | |
plt = plt + ggplot2::geom_ribbon(ggplot2::aes_string(ymin = "lower", ymax = "upper"), alpha = .5) | |
if (!is.null(facet)) { | |
plt = plt + ggplot2::facet_wrap(as.formula(paste("~", facet)), scales = "free_y") | |
} | |
plt | |
} | |
generateFeatureGrid = function(feature, data, resample = NULL, | |
fmin = NULL, fmax = NULL, cutoff = 10L) { | |
if (is.factor(data[[feature]])) { | |
rep(levels(data[[feature]]), length.out = cutoff) | |
} else { | |
if (is.null(fmin)) | |
fmin = min(data[[feature]], na.rm = TRUE) | |
if (is.null(fmax)) | |
fmax = max(data[[feature]], na.rm = TRUE) | |
if (!is.null(resample)) { | |
assertChoice(resample, c("bootstrap", "subsample")) | |
sample(data[[feature]], cutoff, resample == "bootstrap") | |
} else | |
seq(fmin, fmax, length.out = cutoff) | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment