Last active
January 2, 2016 20:29
-
-
Save zmjones/8357005 to your computer and use it in GitHub Desktop.
reshape the Maddison historical GDP and population data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
pkgs <- c("reshape2", "gdata", "countrycode") | |
invisible(lapply(pkgs, require, character.only = TRUE)) | |
mpd <- read.xls("http://www.ggdc.net/maddison/maddison-project/data/mpd_2013-01.xlsx", | |
skip = 2, check.names = FALSE) | |
mpd <- mpd[, !apply(mpd, 2, function(x) all(is.na(x)))] | |
names(mpd)[1] <- "year" | |
names(mpd)[124] <- "Byzantium_Ottoman_Empire_Turkey" | |
colnames(mpd) <- trim(gsub("^[0-9]+|\\.|\\(|\\)|(&)|'", "", colnames(mpd))) | |
colnames(mpd) <- gsub("-\\s+|/\\s+", "-", colnames(mpd)) | |
colnames(mpd) <- gsub("\\s+|-|/", "_", colnames(mpd)) | |
## identical(colnames(mpd), make.names(colnames(mpd), TRUE)) ## check duplicates | |
colnames(mpd) <- make.names(colnames(mpd), TRUE) | |
mpd <- melt(mpd, id.vars = "year") | |
names(mpd)[2:3] <- c("country.name", "gdppc_1990") | |
mpd$country.name <- as.character(mpd$country.name) | |
mpd$country.name[mpd$country.name == "Costa_Rica"] <- "costa rica" | |
mpd$country.name[mpd$country.name == "Turk_menistan"] <- "turkmenistan" | |
mpd$country.name[mpd$country.name == "Haïti"] <- "haiti" | |
mpd$country.name[mpd$country.name == "UAE"] <- "united arab emirates" | |
mpd$country.name[mpd$country.name == "Czecho_slovakia"] <- "czech republic" | |
mpd$country.name[mpd$country.name == "F_Czecho_slovakia"] <- "czechoslovakia" | |
mpd$country.name[mpd$country.name == "N_Zealand"] <- "new zealand" | |
mpd$ccode <- countrycode(mpd$country.name, "country.name", "cown") | |
mpd$ccode[mpd$country.name == "Serbia"] <- 340 | |
## unique(mpd$country.name[is.na(mpd$ccode)]) ## check to see what wasn't matched | |
mpd$country.name <- countrycode(mpd$ccode, "cown", "country.name") ## standardize names | |
mpd$country.name[mpd$ccode == 340] <- "SERBIA" | |
## failed matches are non-independent entities or regions | |
## dropping failed matches for now | |
mpd <- mpd[!is.na(mpd$ccode), ] | |
write.csv(mpd, "mpd.csv", row.names = FALSE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
pkgs <- c("gdata", "countrycode", "reshape2") | |
invisible(lapply(pkgs, require, character.only = TRUE)) | |
read.mpd <- function(file, sheet, value) { | |
df <- read.xls(file, sheet = sheet, skip = 2, | |
fileEncoding = "latin1")[, -c(2:11)] | |
df <- melt(df, id.var = "X") | |
colnames(df) <- c("country.name", "year", value) | |
df$year <- as.integer(gsub("^X", "", as.character(df$year))) | |
suppressWarnings(df[, 3] <- as.integer(df[, 3])) ## generates NAs | |
df$country.name <- trim(df$country.name, FALSE) | |
df$country.name[df$country.name == "Haïti"] <- "haiti" | |
df$ccode <- countrycode(df$country.name, "country.name", "cown") | |
## unique(df$country.name[is.na(df$ccode)]) ## which country names aren't matched | |
return(df[!is.na(df$ccode), ]) | |
} | |
url <- "http://www.ggdc.net/maddison/Historical_Statistics/horizontal-file_02-2010.xls" | |
mpd.pop <- read.mpd(url, 2, "population") | |
mpd.gdp <- read.mpd(url, 3, "gdp_gk_1990") | |
mpd <- merge(mpd.gdp, mpd.pop) | |
write.csv(mpd, "mpd-old.csv", row.names = FALSE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment