Skip to content

Instantly share code, notes, and snippets.

@zmjones
Created February 7, 2014 13:53
Show Gist options
  • Save zmjones/8862947 to your computer and use it in GitHub Desktop.
Save zmjones/8862947 to your computer and use it in GitHub Desktop.
parse and clean log files from AWS S3
import csv
import os
import re
import dateutil
import pandas as pd
from urlparse import urlparse
log_path = ''
# parsing code: http://ferrouswheel.me/2010/01/python_tparse-fields-in-s3-logs/
log_entries = []
for log in os.listdir(log_path):
r = csv.reader(open(log_path + log), delimiter=' ', quotechar='"')
for i in r:
i[2] = i[2] + ' ' + i[3] # repair date field
del i[3]
log_entries.append(i)
# format: http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html
columns = ['Bucket_Owner', 'Bucket', 'Time', 'Remote_IP', 'Requester',
'Request_ID', 'Operation', 'Key', 'Request_URI', 'HTTP_status',
'Error_Code', 'Bytes_Sent', 'Object_Size', 'Total_Time',
'Turn_Around_Time', 'Referrer', 'User_Agent', 'Version_Id']
df = pd.DataFrame(log_entries, columns=columns)
df = df.mask(df == '-')
df.Time = df.Time.map(lambda x: x[x.find('[') + 1:x.find(' ')])
df.Time = df.Time.map(lambda x: re.sub(':', ' ', x, 1))
df.Time = df.Time.apply(dateutil.parser.parse)
df['Date'] = df.Time.apply(lambda x: x.strftime('%m-%d-%Y'))
df.Key = df.Key.apply(lambda x: re.sub('index\.html', '', x) if x == x else None)
df.Referrer = df.Referrer.apply(lambda x: urlparse(x).hostname if x == x else None)
df.to_csv('log.csv', index=False)
@marcmaxson
Copy link

I updated this for python3. note that the log format has expanded, so this structures the output correctly for old and new log files.

#!/usr/bin/python

## From https://gist.github.com/zmjones/8862947

import csv
import os
import re
import dateutil
import pandas as pd
#from urlparse import urlparse # python2
from urllib.parse import urlparse # python3
from pathlib import Path

log_path = 'logs/'
# parsing code: http://ferrouswheel.me/2010/01/python_tparse-fields-in-s3-logs/
columns = ['Bucket_Owner', 'Bucket', 'Time', 'Remote_IP', 'Requester',
           'Request_ID', 'Operation', 'Key', 'Request_URI', 'HTTP_status',
           'Error_Code', 'Bytes_Sent', 'Object_Size', 'Total_Time',
           'Turn_Around_Time', 'Referrer', 'User_Agent', 'Version_Id']

columns24 = columns + ['Host_Id', 'Signature_Version', 'Cipher_Suite', 'Authentication_Type', 'Host_Header', 'TLS_Version']

log_entries = pd.DataFrame(columns=columns24)

for log_file in Path(log_path).rglob('*'):
    if log_file.suffix != '':
        continue
    #with open(log_path + log, encoding="utf8") as csvfile: -- this was buggy compared to pandas. I  get utf8 errors with this
    try:
        line = pd.read_csv(log_file, delimiter=' ', quotechar='"', header=0, names=columns24)
    except:
        line = pd.read_csv(log_file, delimiter=' ', quotechar='"', header=0, names=columns)
    log_entries = log_entries.append(line)

# format: http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html
df = pd.DataFrame(log_entries, columns=columns) # doesn't transform anything, just copies and renames.
df = df.mask(df == '-')
df.Time = df.Time.map(lambda x: x[x.find('[') + 1:x.find(' ')])
df.Time = df.Time.map(lambda x: re.sub(':', ' ', x, 1))
# these next lines didn't work for me. accepted malformed dates for now
#df.Time = df.Time.apply(dateutil.parser.parse)
#df['Date'] = df.Time.apply(lambda x: x.strftime('%m-%d-%Y'))
#df.Key = df.Key.apply(lambda x: re.sub('index\.html', '', x) if x == x else None)
df.Referrer = df.Referrer.apply(lambda x: urlparse(x).hostname if x == x else None)
df.to_csv('log.csv', index=False)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment