Created
December 9, 2019 06:36
-
-
Save zomux/bc0b57bf187b5e995832353d6ec404db to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# Author: Rico Sennrich | |
"""Use operations learned with learn_bpe.py to encode a new text. | |
The text will not be smaller, but use only a fixed vocabulary, with rare words | |
encoded as variable-length sequences of subword units. | |
Reference: | |
Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units. | |
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany. | |
""" | |
from __future__ import unicode_literals, division | |
import sys | |
import os | |
import inspect | |
import codecs | |
import io | |
import argparse | |
import re | |
import warnings | |
import random | |
# hack for python2/3 compatibility | |
from io import open | |
argparse.open = open | |
class BPE(object): | |
def __init__(self, codes, merges=-1, separator='@@', vocab=None, glossaries=None): | |
codes.seek(0) | |
offset=1 | |
# check version information | |
firstline = codes.readline() | |
if firstline.startswith('#version:'): | |
self.version = tuple([int(x) for x in re.sub(r'(\.0+)*$','', firstline.split()[-1]).split(".")]) | |
offset += 1 | |
else: | |
self.version = (0, 1) | |
codes.seek(0) | |
self.bpe_codes = [tuple(item.strip('\r\n ').split(' ')) for (n, item) in enumerate(codes) if (n < merges or merges == -1)] | |
for i, item in enumerate(self.bpe_codes): | |
if len(item) != 2: | |
sys.stderr.write('Error: invalid line {0} in BPE codes file: {1}\n'.format(i+offset, ' '.join(item))) | |
sys.stderr.write('The line should exist of exactly two subword units, separated by whitespace\n') | |
sys.exit(1) | |
# some hacking to deal with duplicates (only consider first instance) | |
self.bpe_codes = dict([(code,i) for (i,code) in reversed(list(enumerate(self.bpe_codes)))]) | |
self.bpe_codes_reverse = dict([(pair[0] + pair[1], pair) for pair,i in self.bpe_codes.items()]) | |
self.separator = separator | |
self.vocab = vocab | |
self.glossaries = glossaries if glossaries else [] | |
self.glossaries_regex = re.compile('^({})$'.format('|'.join(glossaries))) if glossaries else None | |
self.cache = {} | |
def process_line(self, line, dropout=0): | |
"""segment line, dealing with leading and trailing whitespace""" | |
out = "" | |
leading_whitespace = len(line)-len(line.lstrip('\r\n ')) | |
if leading_whitespace: | |
out += line[:leading_whitespace] | |
out += self.segment(line, dropout) | |
trailing_whitespace = len(line)-len(line.rstrip('\r\n ')) | |
if trailing_whitespace and trailing_whitespace != len(line): | |
out += line[-trailing_whitespace:] | |
return out | |
def segment(self, sentence, dropout=0): | |
"""segment single sentence (whitespace-tokenized string) with BPE encoding""" | |
segments = self.segment_tokens(sentence.strip('\r\n ').split(' '), dropout) | |
return ' '.join(segments) | |
def segment_tokens(self, tokens, dropout=0): | |
"""segment a sequence of tokens with BPE encoding""" | |
output = [] | |
for word in tokens: | |
# eliminate double spaces | |
if not word: | |
continue | |
new_word = [out for segment in self._isolate_glossaries(word) | |
for out in encode(segment, | |
self.bpe_codes, | |
self.bpe_codes_reverse, | |
self.vocab, | |
self.separator, | |
self.version, | |
self.cache, | |
self.glossaries_regex, | |
dropout)] | |
for item in new_word[:-1]: | |
output.append(item + self.separator) | |
output.append(new_word[-1]) | |
return output | |
def _isolate_glossaries(self, word): | |
word_segments = [word] | |
for gloss in self.glossaries: | |
word_segments = [out_segments for segment in word_segments | |
for out_segments in isolate_glossary(segment, gloss)] | |
return word_segments | |
def create_parser(subparsers=None): | |
if subparsers: | |
parser = subparsers.add_parser('apply-bpe', | |
formatter_class=argparse.RawDescriptionHelpFormatter, | |
description="learn BPE-based word segmentation") | |
else: | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.RawDescriptionHelpFormatter, | |
description="learn BPE-based word segmentation") | |
parser.add_argument( | |
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin, | |
metavar='PATH', | |
help="Input file (default: standard input).") | |
parser.add_argument( | |
'--codes', '-c', type=argparse.FileType('r'), metavar='PATH', | |
required=True, | |
help="File with BPE codes (created by learn_bpe.py).") | |
parser.add_argument( | |
'--merges', '-m', type=int, default=-1, | |
metavar='INT', | |
help="Use this many BPE operations (<= number of learned symbols)"+ | |
"default: Apply all the learned merge operations") | |
parser.add_argument( | |
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout, | |
metavar='PATH', | |
help="Output file (default: standard output)") | |
parser.add_argument( | |
'--separator', '-s', type=str, default='@@', metavar='STR', | |
help="Separator between non-final subword units (default: '%(default)s'))") | |
parser.add_argument( | |
'--vocabulary', type=argparse.FileType('r'), default=None, | |
metavar="PATH", | |
help="Vocabulary file (built with get_vocab.py). If provided, this script reverts any merge operations that produce an OOV.") | |
parser.add_argument( | |
'--vocabulary-threshold', type=int, default=None, | |
metavar="INT", | |
help="Vocabulary threshold. If vocabulary is provided, any word with frequency < threshold will be treated as OOV") | |
parser.add_argument( | |
'--dropout', type=float, default=0, | |
metavar="P", | |
help="Dropout BPE merge operations with probability P (Provilkov et al., 2019). Use this on training data only.") | |
parser.add_argument( | |
'--glossaries', type=str, nargs='+', default=None, | |
metavar="STR", | |
help="Glossaries. Words matching any of the words/regex provided in glossaries will not be affected "+ | |
"by the BPE (i.e. they will neither be broken into subwords, nor concatenated with other subwords. "+ | |
"Can be provided as a list of words/regex after the --glossaries argument. Enclose each regex in quotes.") | |
return parser | |
def encode(orig, bpe_codes, bpe_codes_reverse, vocab, separator, version, cache, glossaries_regex=None, dropout=0): | |
"""Encode word based on list of BPE merge operations, which are applied consecutively | |
""" | |
if not dropout and orig in cache: | |
return cache[orig] | |
if glossaries_regex and glossaries_regex.match(orig): | |
cache[orig] = (orig,) | |
return (orig,) | |
if len(orig) == 1: | |
return orig | |
if version == (0, 1): | |
word = list(orig) + ['</w>'] | |
elif version == (0, 2): # more consistent handling of word-final segments | |
word = list(orig[:-1]) + [orig[-1] + '</w>'] | |
else: | |
raise NotImplementedError | |
while len(word) > 1: | |
# get list of symbol pairs; optionally apply dropout | |
pairs = [(bpe_codes[pair],i,pair) for (i,pair) in enumerate(zip(word, word[1:])) if (not dropout or random.random() > dropout) and pair in bpe_codes] | |
if not pairs: | |
break | |
#get first merge operation in list of BPE codes | |
bigram = min(pairs)[2] | |
# find start position of all pairs that we want to merge | |
positions = [i for (rank,i,pair) in pairs if pair == bigram] | |
i = 0 | |
new_word = [] | |
bigram = ''.join(bigram) | |
for j in positions: | |
# merges are invalid if they start before current position. This can happen if there are overlapping pairs: (x x x -> xx x) | |
if j < i: | |
continue | |
new_word.extend(word[i:j]) # all symbols before merged pair | |
new_word.append(bigram) # merged pair | |
i = j+2 # continue after merged pair | |
new_word.extend(word[i:]) # add all symbols until end of word | |
word = new_word | |
# don't print end-of-word symbols | |
if word[-1] == '</w>': | |
word = word[:-1] | |
elif word[-1].endswith('</w>'): | |
word[-1] = word[-1][:-4] | |
word = tuple(word) | |
if vocab: | |
word = check_vocab_and_split(word, bpe_codes_reverse, vocab, separator) | |
cache[orig] = word | |
return word | |
def recursive_split(segment, bpe_codes, vocab, separator, final=False): | |
"""Recursively split segment into smaller units (by reversing BPE merges) | |
until all units are either in-vocabulary, or cannot be split futher.""" | |
try: | |
if final: | |
left, right = bpe_codes[segment + '</w>'] | |
right = right[:-4] | |
else: | |
left, right = bpe_codes[segment] | |
except: | |
#sys.stderr.write('cannot split {0} further.\n'.format(segment)) | |
yield segment | |
return | |
if left + separator in vocab: | |
yield left | |
else: | |
for item in recursive_split(left, bpe_codes, vocab, separator, False): | |
yield item | |
if (final and right in vocab) or (not final and right + separator in vocab): | |
yield right | |
else: | |
for item in recursive_split(right, bpe_codes, vocab, separator, final): | |
yield item | |
def check_vocab_and_split(orig, bpe_codes, vocab, separator): | |
"""Check for each segment in word if it is in-vocabulary, | |
and segment OOV segments into smaller units by reversing the BPE merge operations""" | |
out = [] | |
for segment in orig[:-1]: | |
if segment + separator in vocab: | |
out.append(segment) | |
else: | |
#sys.stderr.write('OOV: {0}\n'.format(segment)) | |
for item in recursive_split(segment, bpe_codes, vocab, separator, False): | |
out.append(item) | |
segment = orig[-1] | |
if segment in vocab: | |
out.append(segment) | |
else: | |
#sys.stderr.write('OOV: {0}\n'.format(segment)) | |
for item in recursive_split(segment, bpe_codes, vocab, separator, True): | |
out.append(item) | |
return out | |
def read_vocabulary(vocab_file, threshold): | |
"""read vocabulary file produced by get_vocab.py, and filter according to frequency threshold. | |
""" | |
vocabulary = set() | |
for line in vocab_file: | |
word, freq = line.strip('\r\n ').split(' ') | |
freq = int(freq) | |
if threshold == None or freq >= threshold: | |
vocabulary.add(word) | |
return vocabulary | |
def isolate_glossary(word, glossary): | |
""" | |
Isolate a glossary present inside a word. | |
Returns a list of subwords. In which all 'glossary' glossaries are isolated | |
For example, if 'USA' is the glossary and '1934USABUSA' the word, the return value is: | |
['1934', 'USA', 'B', 'USA'] | |
""" | |
# regex equivalent of (if word == glossary or glossary not in word) | |
if re.match('^'+glossary+'$', word) or not re.search(glossary, word): | |
return [word] | |
else: | |
segments = re.split(r'({})'.format(glossary), word) | |
segments, ending = segments[:-1], segments[-1] | |
segments = list(filter(None, segments)) # Remove empty strings in regex group. | |
return segments + [ending.strip('\r\n ')] if ending != '' else segments | |
if __name__ == '__main__': | |
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) | |
newdir = os.path.join(currentdir, 'subword_nmt') | |
if os.path.isdir(newdir): | |
warnings.simplefilter('default') | |
warnings.warn( | |
"this script's location has moved to {0}. This symbolic link will be removed in a future version. Please point to the new location, or install the package and use the command 'subword-nmt'".format(newdir), | |
DeprecationWarning | |
) | |
# python 2/3 compatibility | |
if sys.version_info < (3, 0): | |
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr) | |
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout) | |
sys.stdin = codecs.getreader('UTF-8')(sys.stdin) | |
else: | |
sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8') | |
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') | |
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', write_through=True, line_buffering=True) | |
parser = create_parser() | |
args = parser.parse_args() | |
# read/write files as UTF-8 | |
args.codes = codecs.open(args.codes.name, encoding='utf-8') | |
if args.input.name != '<stdin>': | |
args.input = codecs.open(args.input.name, encoding='utf-8') | |
if args.output.name != '<stdout>': | |
args.output = codecs.open(args.output.name, 'w', encoding='utf-8') | |
if args.vocabulary: | |
args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8') | |
if args.vocabulary: | |
vocabulary = read_vocabulary(args.vocabulary, args.vocabulary_threshold) | |
else: | |
vocabulary = None | |
if sys.version_info < (3, 0): | |
args.separator = args.separator.decode('UTF-8') | |
if args.glossaries: | |
args.glossaries = [g.decode('UTF-8') for g in args.glossaries] | |
bpe = BPE(args.codes, args.merges, args.separator, vocabulary, args.glossaries) | |
for line in args.input: | |
args.output.write(bpe.process_line(line, args.dropout)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment