Last active
June 26, 2017 08:24
-
-
Save zori/6a1e9cac10b4ffcf601407cddda5cd75 to your computer and use it in GitHub Desktop.
Evaluate ChainerCV Faster R-CNN performance on VOC 2007 test
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pprint | |
import chainer | |
from chainercv.datasets import voc_detection_label_names | |
from chainercv.datasets import VOCDetectionDataset | |
from chainercv.extensions import DetectionVOCEvaluator | |
from chainercv.links import FasterRCNNVGG16 | |
eval_data = VOCDetectionDataset(split='test', year='2007', use_difficult=True, return_difficult=True) | |
eval_iter = chainer.iterators.SerialIterator(eval_data, batch_size=1, repeat=False, shuffle=False) | |
pretrained_model_path = 'examples/faster_rcnn/result/snapshot_model.npz' | |
model = FasterRCNNVGG16(n_fg_class=len(voc_detection_label_names), pretrained_model=pretrained_model_path) | |
evaluator = DetectionVOCEvaluator(eval_iter, model, use_07_metric=True, label_names=voc_detection_label_names) | |
gpu_id = 0 | |
model.to_gpu(gpu_id) | |
chainer.cuda.get_device(gpu_id).use() | |
chainer.config.train = False | |
model.use_preset('evaluate') | |
reporter = chainer.Reporter() | |
reporter.add_observer('target', model) | |
with reporter: | |
m = evaluator.evaluate() | |
pprint.pprint(m) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Important points:
chainer.config.train = False
will cause less proposals to be generated, and kept after NMS (leading to faster inference); note that AP slighlty dropsmodel.use_preset('evaluate')
configures post-processing parameters for evaluation such as threshold for confidence scoreDetectionVOCEvaluator
should be instantiated withuse_07_metric=True
(default isFalse
), if evaluation is conducted on VOC 2007 test datasetVOCDetectionDataset
should return information about difficulties of bounding boxes, as the evaluation metric expects that to be included; to also include the difficult bounding boxes in evaluation, setuse_difficult=True
andreturn_difficult=True