Created
November 7, 2017 15:56
-
-
Save zou3519/88c0b89ad958049548454247d3545a4c to your computer and use it in GitHub Desktop.
Numbers for variance of an outer dimension on cuda, before and after numeric stability changes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
tensor = torch.randn(100, 1).cuda() | |
%timeit tensor.var(0); torch.cuda.synchronize() | |
tensor = torch.randn(10000, 1).cuda() | |
%timeit tensor.var(0); torch.cuda.synchronize() | |
tensor = torch.randn(1000, 2, 10).cuda() | |
%timeit tensor.var(1); torch.cuda.synchronize() | |
tensor = torch.randn(10000, 2, 10).cuda() | |
%timeit tensor.var(1); torch.cuda.synchronize() | |
tensor = torch.randn(50000, 2, 10).cuda() | |
%timeit tensor.var(1); torch.cuda.synchronize() | |
tensor = torch.randn(2, 2, 2).cuda() | |
%timeit tensor.var(1); torch.cuda.synchronize() | |
tensor = torch.randn(100, 100, 100).cuda() | |
%timeit tensor.var(1); torch.cuda.synchronize() | |
tensor = torch.randn(1000, 1000, 100).cuda() | |
%timeit tensor.var(1); torch.cuda.synchronize() | |
tensor = torch.randn(5, 10000, 2).cuda() | |
%timeit tensor.var(1); torch.cuda.synchronize() | |
tensor = torch.randn(5, 100000, 2).cuda() | |
%timeit tensor.var(1); torch.cuda.synchronize() | |
Before changes | |
37.3 µs ± 94.8 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
1.6 ms ± 401 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) | |
31.2 µs ± 120 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
99.6 µs ± 230 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
477 µs ± 245 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) | |
22.5 µs ± 399 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
60.2 µs ± 101 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
3.83 ms ± 604 ns per loop (mean ± std. dev. of 7 runs, 100 loops each) | |
1.62 ms ± 125 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) | |
18.7 ms ± 1.25 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) | |
After changes | |
84.9 µs ± 446 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
6.25 ms ± 3.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) | |
32.1 µs ± 162 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
110 µs ± 80.3 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
532 µs ± 201 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) | |
23.1 µs ± 181 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
111 µs ± 336 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) | |
5.48 ms ± 843 ns per loop (mean ± std. dev. of 7 runs, 100 loops each) | |
6.24 ms ± 7.47 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) | |
65.7 ms ± 16.3 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment