Last active
June 12, 2018 12:21
-
-
Save zou3519/8e4ce6652a3dd132a8c4336e697bbbf0 to your computer and use it in GitHub Desktop.
[pytorch] GridSampler CUDNN vs THCUNN performance comparision script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
def benchmark_shape(N, C, IH, IW, H, W, nrand, nrep): | |
""" | |
Performs nrand*nrep trials. | |
""" | |
input_datas = [torch.randn(C, N, IH, IW) for i in range(0, nrand)] | |
grid_datas = [torch.randn(H, N, W, 2) for i in range(0, nrand)] | |
datas = zip(input_datas, grid_datas) | |
# print "Running CPU benchmark" | |
# cpu_results = benchmark_helper(workload_cpu, datas, nrep); | |
print "Running CUDNN benchmark" | |
cudnn_results = benchmark_helper(workload_cudnn, datas, nrep); | |
assert(cudnn.enabled) | |
cudnn.enabled = False | |
print "Running THCUNN benchmark" | |
cuda_results = benchmark_helper(workload_cuda, datas, nrep); | |
cudnn.enabled = True | |
def check_shapes(N, C, IH, IW, H, W): | |
input_cpu = Variable(torch.randn(C, N, IH, IW).transpose(0, 1), \ | |
requires_grad=True) | |
grid_cpu = Variable(torch.randn(H, N, W, 2).transpose(0, 1), \ | |
requires_grad=True) | |
out_cpu = F.grid_sample(input_cpu, grid_cpu) | |
assert(out_cpu.size() == torch.Size([N, C, H, W])) | |
input_cuda = Variable(input_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | |
grid_cuda = Variable(grid_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | |
cudnn.enabled = False | |
out_cuda = F.grid_sample(input_cuda, grid_cuda) | |
cudnn.enabled = True | |
assertTensorsEqual(out_cpu, out_cuda) | |
input_cudnn = Variable(input_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | |
grid_cudnn = Variable(grid_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | |
out_cudnn = F.grid_sample(input_cudnn, grid_cudnn) | |
assertTensorsEqual(out_cpu, out_cudnn) | |
gradients = out_cpu.data.new(out_cpu.size()).normal_() | |
out_cpu.backward(gradients) | |
gradients_cuda = gradients.cuda() | |
cudnn.enabled = False | |
out_cuda.backward(gradients_cuda) | |
cudnn.enabled= True | |
out_cudnn.backward(gradients_cuda) | |
assertTensorsEqual(input_cpu.grad, input_cuda.grad, msg="A") | |
assertTensorsEqual(input_cpu.grad, input_cudnn.grad, msg="B") | |
assertTensorsEqual(input_cudnn.grad, input_cuda.grad, msg="C") | |
assertTensorsEqual(grid_cpu.grad, grid_cuda.grad, msg="D") | |
assertTensorsEqual(grid_cpu.grad, grid_cudnn.grad, msg="E") | |
assertTensorsEqual(grid_cuda.grad, grid_cudnn.grad, msg="F") | |
def benchmark_helper(workload_fn, datas, nrep): | |
start = time.time() | |
result = [] | |
for (input_data, grid_data) in datas: | |
for i in range(0, nrep): | |
out = (workload_fn(input_data, grid_data)) | |
result.append(out) | |
end = time.time() | |
print (end - start) | |
return result | |
def assertTensorsEqual(a, b, prec=1e-5, msg=''): | |
assert(a.size() == b.size()) | |
a = a.cuda() | |
b = b.cuda() | |
diff = a - b | |
if diff.is_signed(): | |
diff = diff.abs() | |
max_err = diff.max().data[0] | |
if (max_err > prec): | |
print msg | |
print "Error was " + str(max_err) | |
def workload_cpu(input_data, grid_data): | |
input = Variable(input_data.transpose(0, 1), requires_grad=True) | |
grid = Variable(grid_data.transpose(0, 1), requires_grad=True) | |
out = F.grid_sample(input, grid) | |
grads = out.data.new(out.size()).normal_() | |
out.backward(grads) | |
del input | |
del grid | |
del out | |
def workload_cudnn(input_data, grid_data): | |
assert(cudnn.enabled) | |
workload_cuda_helper(input_data, grid_data) | |
def workload_cuda(input_data, grid_data): | |
assert(not cudnn.enabled) | |
workload_cuda_helper(input_data, grid_data) | |
def workload_cuda_helper(input_data, grid_data): | |
input = Variable(input_data.transpose(0, 1).cuda(), requires_grad=True) | |
grid = Variable(grid_data.transpose(0, 1).cuda(), requires_grad=True) | |
out = F.grid_sample(input, grid) | |
grads = out.data.new(out.size()).normal_() | |
out.backward(grads) | |
del input | |
del grid | |
del out | |
if __name__ == "__main__": | |
# benchmark_shape(N, C, IH, IW, H, W, nrand, nrep) | |
print "Testing small sizes" | |
benchmark_shape(10, 5, 20, 20, 15, 15, 5, 5) | |
print "" | |
print "Testing small sizes, big N" | |
benchmark_shape(500, 5, 20, 20, 15, 15, 5, 5) | |
print "" | |
print "Testing large sizes" | |
benchmark_shape(50, 10, 100, 100, 100, 100, 5, 5) | |
print "" | |
print "Testing large sizes, small C" | |
benchmark_shape(50, 5, 100, 100, 100, 100, 5, 5) | |
print "" | |
print "Testing large N" | |
benchmark_shape(500, 10, 50, 50, 50, 50, 5, 5) | |
print "" | |
print "Testing large C" | |
benchmark_shape(50, 100, 50, 50, 50, 50, 5, 5) | |
print "" | |
print "Testing large input" | |
benchmark_shape(50, 10, 500, 500, 80, 80, 5, 5) | |
print "" | |
print "Testing large output" | |
benchmark_shape(50, 10, 80, 80, 500, 500, 5, 5) | |
print "" | |
# check_shapes(100, 8, 100, 100, 60, 60) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hello, thanks for your gist.
I have been working on your implementation of SpatialGridSamplerBilinear lately, and I think you may have done a mistake when computing indices n, h, w from thread id here : https://github.com/pytorch/pytorch/blob/master/aten/src/THCUNN/SpatialGridSamplerBilinear.cu#L45
I think it would make memory more coalescent to do the following instead of indexing in order n, h, w :
To back my claim and maybe submit a PR, I think I can use your script (found on your initial PR for this very function) as a basis to measure speed and compare with CuDNN and former implementation. It may not be up to date, but I feel like it only needs a few changes.
However I am intrigued about the fact that you initially construct a
C,N,H,W
tensor only to transpose it just after. Is there a particular reason behind this ? does it change the stride of the first two dimensions ? (in that case that's important to know that for optimization)Also, when doing consistency check with
check_shapes
, from untouched source code, I get bad results for grad check, for all possible test (D, E, and F). Was it already the case back then ? Maybe it's normal ? (it's only an error of max1e-4
, but still above1e-5
)Maybe there's a more up to date test script somewhere ?
Thanks,
Clément