Created
November 13, 2017 01:19
-
-
Save zou3519/de11aa86df07712784c5009ce0362787 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch | |
from torch.autograd import Variable | |
def set_seed(seed): | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
def main(): | |
set_seed(1) | |
cuda = True | |
n, e, c = 5, 100, 5 | |
input = torch.randn(n,c) | |
idxn = torch.from_numpy(np.random.randint(n,size=e)) # indices are repeated | |
if cuda: | |
input = input.cuda(); idxn = idxn.cuda() | |
gradsI, gradsS = [], [] | |
N = 2 | |
for i in range(N): | |
inputv = Variable(input, requires_grad=True) | |
sel_input = torch.index_select(inputv, 0, Variable(idxn)) | |
sel_input.retain_grad() | |
# the following computation is one of the "random conditions" | |
data = [torch.sum(sel_input.narrow(0,0,e//2), 0), | |
torch.sum(sel_input.narrow(0,e//2,e//2), 0) ] | |
out = torch.cat(data,0) | |
out.exp().sum().backward() | |
gradsI.append(inputv.grad.data.cpu().clone()) | |
gradsS.append(sel_input.grad.data.cpu().clone()) | |
for i in range(N): | |
for j in range(N): | |
print('-------------------') | |
print(i,j,(gradsI[i]-gradsI[j]).abs().max(), (gradsS[i]-gradsS[j]).abs().max()) | |
print(gradsI[i][0,2], gradsI[j][0,2]) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment