Last active
May 8, 2018 13:21
-
-
Save zthxxx/cc8bdfbd183093bf99dcd11f6ed878d4 to your computer and use it in GitHub Desktop.
install nvidia-docker on Debian/Ubuntu, and run tensorflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# If you have nvidia-docker 1.0 installed: we need to remove it and all existing GPU containers | |
docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f | |
apt purge -y nvidia-docker | |
# Add the package repositories | |
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | apt-key add - | |
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) | |
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \ | |
tee /etc/apt/sources.list.d/nvidia-docker.list | |
apt update | |
# Install nvidia-docker2 and reload the Docker daemon configuration | |
apt install -y nvidia-docker2 | |
pkill -SIGHUP dockerd | |
# Test nvidia-smi with the latest official CUDA image | |
docker pull nvidia/cuda | |
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi | |
# ref: https://www.tensorflow.org/install/install_linux#InstallingDocker | |
# ref: https://hub.docker.com/r/tensorflow/tensorflow/ | |
docker pull tensorflow/tensorflow:latest-gpu-py3 | |
nvidia-docker run --name tf -id -p 8888:8888 tensorflow/tensorflow:latest-gpu-py3 | |
docker exec tf bash -c 'jupyter notebook list' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment