-
-
Save zumpchke/da26fea57e5adcbeef8d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Lambda, TimeDistributedDense | |
from keras.layers.recurrent import LSTM | |
from keras.layers.embeddings import Embedding | |
from keras.optimizers import RMSprop | |
from keras.utils import np_utils | |
import numpy as np | |
import matplotlib.pyplot as plt | |
x_input = np.arange(0.,50.,.01) | |
y_input = map(lambda x : 1.337 * np.sin(2.*np.pi*x*1.),x_input) | |
print 'x_input shape=' + str(len(x_input)) + ', y_input shape=' + str(len(y_input)) | |
lenOfTime = 30 # number of periods in the past to base the predictions on | |
stepsInFuture = 20 # number of periods in the future to predict | |
for i in range(3000): | |
_mx = np.hstack((y_input[i:(i+lenOfTime)], np.repeat(y_input[i+lenOfTime-1],stepsInFuture))) | |
_target = y_input[(i+lenOfTime):(i+lenOfTime+stepsInFuture)] | |
if i == 0: | |
mx = _mx | |
target = _target | |
#print 'mx 0 = ' + str(mx) + ', target 0 = ' + str(target) | |
else: | |
mx = np.vstack((mx,_mx)) | |
target = np.vstack((target,_target)) | |
print 'mx shape=' + str(mx.shape) + ', target shape=' + str(target.shape) | |
X = mx.reshape(3000,lenOfTime+stepsInFuture,1) | |
y = target.reshape(3000,stepsInFuture,1) | |
print 'X shape=' + str(X.shape) + ', y shape=' + str(y.shape) | |
X_train = X[0:2000,:] | |
y_train = y[0:2000,:] | |
X_test = X[2000:,:] | |
y_test = y[2000:,:] | |
print 'X_train shape=' + str(X_train.shape) + ', y_train shape=' + str(y_train.shape) | |
print 'X_test shape=' + str(X_test.shape) + ', y_test shape=' + str(y_test.shape) | |
#print 'X_train[0:3,:,0] = ' + str(X_train[0:3,:,0]) + ', y_train[0:3,:,0] = ' + str(y_train[0:3,:,0]) | |
hidden_neurons = 100 | |
def time_slice(output): | |
return output[:,-20:,:] #todo: how to use stepsInFuture here? | |
model = Sequential() | |
model.add(LSTM(output_dim=hidden_neurons, input_dim = 1, return_sequences=True, activation='tanh')) | |
model.add(LSTM(output_dim=hidden_neurons, input_dim = hidden_neurons, return_sequences=True, activation='tanh')) | |
model.add(LSTM(output_dim=hidden_neurons, input_dim = hidden_neurons, return_sequences=True, activation='tanh')) | |
model.add(Lambda(time_slice, output_shape=(stepsInFuture, hidden_neurons))) | |
model.add(TimeDistributedDense(output_dim=1, activation = 'linear', input_dim=hidden_neurons, input_length=stepsInFuture)) | |
start = time.time() | |
model.compile(loss="mse", optimizer="rmsprop") | |
print 'model compiled in ' + str(time.time() - start) + ' seconds' | |
model.fit(X_train, y_train, batch_size=128, nb_epoch=30,validation_data=(X_test, y_test), show_accuracy=True) | |
plt.plot(model.predict(X_test)[0,:,0], label='predicted') | |
plt.plot(y_test[0,:,0], label = 'actual') | |
plt.legend() | |
plt.show() | |
print "MAE: {0:.6f}".format(np.mean(abs(y_test - model.predict(X_test)))) | |
print "MSE: {0:.6f}".format(np.mean((y_test - model.predict(X_test)) ** 2.)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment