Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save zyuzuguldu/d4d516e0770fb4a0af84731f72e7b4ef to your computer and use it in GitHub Desktop.
Save zyuzuguldu/d4d516e0770fb4a0af84731f72e7b4ef to your computer and use it in GitHub Desktop.
Comparing custom GBM's RMSE to sklearn's
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
custom_gbm = CustomGradientBoostingRegressor(
n_estimators=20,
learning_rate=0.1,
max_depth=1
)
custom_gbm.fit(x, y)
custom_gbm_rmse = mean_squared_error(y, custom_gbm.predict(x), squared=False)
print(f"Custom GBM RMSE:{custom_gbm_rmse:.15f}")
sklearn_gbm = GradientBoostingRegressor(
n_estimators=20,
learning_rate=0.1,
max_depth=1
)
sklearn_gbm.fit(x, y)
sklearn_gbm_rmse = mean_squared_error(y, sklearn_gbm.predict(x), squared=False)
print(f"Scikit-learn GBM RMSE:{sklearn_gbm_rmse:.15f}")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment