Skip to content

Instantly share code, notes, and snippets.

View 5HT's full-sized avatar
🌐
I'm very skeptical that person without empathy can create beautiful mathematics.

Namdak Tonpa 5HT

🌐
I'm very skeptical that person without empathy can create beautiful mathematics.
View GitHub Profile
Parameter Point : Set.(* Define congruence of segments, written as AB ≑ CD *)
Parameter Cong : Point -> Point -> Point -> Point -> Prop.
Notation "A B ≑ C D" := (Cong A B C D) (at level 70).(* Define betweenness: B is between A and C, written A-B-C *)
Parameter Bet : Point -> Point -> Point -> Prop.
Notation "A - B - C" := (Bet A B C) (at level 70).(* Define perpendicularity: line AB βŠ₯ CD *)
Parameter Perp : Point -> Point -> Point -> Point -> Prop.
Notation "A B βŠ₯ C D" := (Perp A B C D) (at level 70).(* Congruence is an equivalence relation *)
Axiom Cong_refl : forall A B, A B ≑ A B.
Axiom Cong_sym : forall A B C D, A B ≑ C D -> C D ≑ A B.
Axiom Cong_trans : forall A B C D E F, A B ≑ C D -> C D ≑ E F -> A B ≑ E F.(* Identity axiom for congruence *)
Volume VIII: Consciousness
==========================
Kuhn arrays all the theories on a linear spectrum, simplistically and roughly,
from the most physical on the left (at the beginning) to the least physical
on the right (near the end).
* Physicalism
* Non-Reductive Physicalism
* Integrated Information Theory
Ця систСма Ρ‚ΠΈΠΏΡ–Π² Ρ” Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρ– Π°Π»Π³Π΅Π±Ρ€Π°Ρ—Ρ‡Π½ΠΎΡ— Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ— Ρ‚ΠΎΠΌΡƒ шо ΠΊΠ²Π°Π½Ρ‚ΠΎΡ€ ΡƒΠ·Π°Π³Π°Π»ΡŒΠ½Π΅Π½Π½Ρ Pi
Ρ” Π½Π΅Ρ‚Ρ€ΠΈΠ²Ρ–Π°Π»ΡŒΠ½ΠΈΠΌ Ρ–Π·ΠΎΠΌΠΎΡ€Ρ„Ρ–Π·ΠΌΠΎΠΌ Π΄ΠΎ Ρ€ΠΎΠ·ΡˆΠ°Ρ€ΡƒΠ²Π°Π½Π½Ρ Fiber Bundle, Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡ”Ρ‚ΡŒΡΡ як
основний ΠΏΡ€ΠΈΠΌΡ–Ρ‚ΠΈΠ² Π°Π»Π³Π΅Π±Ρ€Π°Ρ—Ρ‡Π½ΠΎΡ— Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ—.
type term =
I) Мова ΡΠΊΠ»Π°Π΄Π°Ρ”Ρ‚ΡŒΡΡ Π· 5 слів. 2 слова ΡƒΠ½Ρ–Π²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ– для всіх Ρ‚ΠΈΠΏΡ–Π·ΠΎΠ²Π°Π½ΠΈΡ… ΠΌΠΎΠ² програмування.
1) ΠŸΠ΅Ρ€ΡˆΠ΅ слово --- Ρ†Π΅ "Π—ΠΌΡ–Π½Π½Π°" --- Ρ–Π½Ρ‚ΡƒΡ–Ρ‚ΠΈΠ²Π½ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ” поняття, якС ΠΏΠΎΠΊΠ°Π·ΡƒΡ” Ρ–ΠΌΠ΅Π½ΠΎΠ²Π°Π½Π΅ Π°Π»Ρ„Π°Π²Ρ–Ρ‚Π°ΠΌΠΈ Π°Π±ΠΎ числами місцС Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΡ–-Ρ€Π΅Ρ‡Π΅Π½Π½Ρ–, Ρ‰ΠΎ ΠΌΠΎΠΆΠ΅ містити Ρ–Π½ΡˆΡ– ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΈ-рСчСння.
$ ./gradlew bootRun
> Task :bootRun
. ____ _ __ _ _
/\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
\\/ ___)| |_)| | | | | || (_| | ) ) ) )
' |____| .__|_| |_|_| |_\__, | / / / /
=========|_|==============|___/=/_/_/_/
(* Type System *)
type exp =
| EVar of string | ELam of exp * (string * exp) | EApp of exp * exp
| EPi of exp * (string * exp) | ESig of exp * (string * exp) | EPair of string * exp * exp
| EId of exp | ERef of exp
| EInt | EIntConst of Z.t | ERat | ERatConst of exp * exp | ERatLt of exp * exp
| EReal | ECut of exp * exp * exp option * exp option * exp option * exp option * exp option * exp option * exp option
| ERealLt of exp * exp | ERealEq of exp * exp | ERealOps of real_op * exp * exp
| EIm of exp | EInf of exp | EIndIm of exp * exp
| EDisc of exp | EHub of exp | EBase of exp | ESpoke of exp * exp | EIndDisc of exp * exp * exp * exp * exp
Let build a Type System for mechanical verification of BROUWER’S FIXED-POINT THEOREM IN REAL-COHESIVE HOMOTOPY TYPE THEORY https://arxiv.org/pdf/1509.07584 by Shulman
Here is proposed CCHM(HoTT)/Cohesive (Im) core: Extend if needed and produce proof therm of Brower's Fixed Point Theorem in this type theory to verify mechanically. Then we will build a specialized type checker for these purposes.
type exp =
| EPre of Z.t | EKan of Z.t | EVar of name | EHole (* cosmos *)
| EPi of exp * (name * exp) | ELam of exp * (name * exp) | EApp of exp * exp (* pi *)
| ESig of exp * (name * exp) | EPair of tag * exp * exp | EFst of exp | ESnd of exp (* sigma *)
| EId of exp | ERef of exp | EJ of exp | EField of exp * string (* strict equality *)
| EPathP of exp | EPLam of exp | EAppFormula of exp * exp (* path equality *)
Let's build a Simplicial HoTT extension to CCHM/CHM/HTS type systems targeting GAP replacement, infinity-gategorical framework like Rezk prover (Riehl, Shulman) for Simplex and Simplicial types built into type checker. Then gradually extent type inference rules for Group, Monoid, Category, Chain, Ring, Field. As eliminators I propose Face, Degeneracies, Composition, as Introduction inference rule I propose Simplicial Object with common syntax:
def <name> : <type> := П (context), conditions ⊒ <n> (elements | constraints)
def chain : Chain := П (context), conditions ⊒ n (Cβ‚€, C₁, ..., Cβ‚™ | βˆ‚β‚€, βˆ‚β‚, ..., βˆ‚β‚™β‚‹β‚)
def simplicial : Simplicial := П (context), conditions ⊒ n (sβ‚€, s₁, ..., sβ‚™ | facemaps, degeneracies)
def group : Group := П (context), conditions ⊒ n (generators | relations)
def cat : Category := П (context), conditions ⊒ n (objects | morphisms | coherence)
Consider examples:
@5HT
5HT / CORE_OS_PACKAGE.txt
Created February 15, 2025 06:01
CORE_OS_PACKAGE
aim_spu_module.self
appldr
creserved_0
default.spp
emer_init.self
eurus_fw.bin
hdd_copy.self
isoldr
lv0
lv1.self
@5HT
5HT / p3updat.pup
Created February 15, 2025 05:59
p3updat.pup
BDIT_FIRMWARE_PACKAGE.pkg
BDPT_FIRMWARE_PACKAGE_301R.pkg
BDPT_FIRMWARE_PACKAGE_302R.pkg
BDPT_FIRMWARE_PACKAGE_303R.pkg
BDPT_FIRMWARE_PACKAGE_304R.pkg
BDPT_FIRMWARE_PACKAGE_306R.pkg
BDPT_FIRMWARE_PACKAGE_308R.pkg
BLUETOOTH_FIRMWARE.pkg
CORE_OS_PACKAGE.pkg
MULTI_CARD_FIRMWARE.pkg
@5HT
5HT / cell.txt
Created February 15, 2025 05:47
/usr/local/cell
.
β”œβ”€β”€ CP_Update
β”‚Β Β  β”œβ”€β”€ Readme_CP_e.txt
β”‚Β Β  β”œβ”€β”€ Readme_CP_j.txt
β”‚Β Β  β”œβ”€β”€ license
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ ps3tool_license_e.txt
β”‚Β Β  β”‚Β Β  └── ps3tool_license_j.txt
β”‚Β Β  └── reftool_cp_133.bin
β”œβ”€β”€ HW_doc
β”‚Β Β  β”œβ”€β”€ Readme-RSX_Doc_e.txt