Created
May 31, 2025 01:50
-
-
Save 5HT/dac27c60d9b546c111a8ad45526b12a3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Parameter Point : Set.(* Define congruence of segments, written as AB ≡ CD *) | |
Parameter Cong : Point -> Point -> Point -> Point -> Prop. | |
Notation "A B ≡ C D" := (Cong A B C D) (at level 70).(* Define betweenness: B is between A and C, written A-B-C *) | |
Parameter Bet : Point -> Point -> Point -> Prop. | |
Notation "A - B - C" := (Bet A B C) (at level 70).(* Define perpendicularity: line AB ⊥ CD *) | |
Parameter Perp : Point -> Point -> Point -> Point -> Prop. | |
Notation "A B ⊥ C D" := (Perp A B C D) (at level 70).(* Congruence is an equivalence relation *) | |
Axiom Cong_refl : forall A B, A B ≡ A B. | |
Axiom Cong_sym : forall A B C D, A B ≡ C D -> C D ≡ A B. | |
Axiom Cong_trans : forall A B C D E F, A B ≡ C D -> C D ≡ E F -> A B ≡ E F.(* Identity axiom for congruence *) | |
Axiom Cong_identity : forall A B C, A B ≡ C C -> A = B.(* Betweenness axioms *) | |
Axiom Bet_identity : forall A B, A - B - A -> A = B. | |
Axiom Bet_sym : forall A B C, A - B - C -> C - B - A.(* Pasch’s axiom (simplified) for triangle construction *) | |
Axiom Pasch : forall A B C P Q, | |
A - P - C -> B - Q - C -> exists X, A - X - B /\ P - X - Q.(* Perpendicularity axiom *) | |
Axiom Perp_exists : forall A B, exists C, A B ⊥ A C /\ A <> C.(* Euclid’s parallel postulate (simplified) *) | |
Axiom Parallel : forall A B C D P, | |
~ (A = B) -> exists Q, A B ⊥ P Q /\ C D ⊥ P Q.(* Segment construction *) | |
Axiom Segment_construction : forall A B C D, | |
exists E, A - B - E /\ B E ≡ C D.Definition RightTriangle (A B C : Point) : Prop := | |
A - B - C / B - C - A / C - A - B -> False /\ (* Non-collinear ) | |
A B ⊥ B C. ( Right angle at B *)(* Define a square on segment AB ) | |
Definition Square (A B C D : Point) (AB : Point -> Point -> Prop) : Prop := | |
AB A B /\ AB B C /\ AB C D /\ AB D A /\ ( All sides congruent ) | |
A B ⊥ B C /\ B C ⊥ C D /\ C D ⊥ D A /\ D A ⊥ A B. ( All angles right *)(* Pythagorean Theorem: Square on AC congruent to sum of squares on AB and BC ) | |
Definition Pythagorean_theorem (A B C : Point) : Prop := | |
RightTriangle A B C -> | |
exists P Q R S T U V W, | |
Square A B P Q R S /\ ( Square on AB ) | |
Square B C T U V W /\ ( Square on BC *) | |
Square A C (fun X Y => exists Z, X - Z - Y /\ (A B ≡ X Z /\ B C ≡ Z Y)).Theorem pythagorean_synthetic : forall A B C : Point, | |
RightTriangle A B C -> Pythagorean_theorem A B C. | |
Proof. | |
intros A B C HRT. | |
unfold RightTriangle in HRT; destruct HRT as [Hnoncol Hperp]. | |
auto. | |
Qed. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment