Last active
November 20, 2017 17:00
-
-
Save AtiqueUrRehman/c1ccc7a76115262e20e507f4f256a196 to your computer and use it in GitHub Desktop.
An example of converting images to tfrecords, in this case we have an image-to-image mapping, so we have some input images and corresponding label images. Correspoing reading code is in comments below. A simpler barebones example is here : https://gist.github.com/AtiqueUrRehman/dfeeea0397fa5588619ebf193717ac0c
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
# Copyright 2016 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Converts image data to TFRecords file format with Example protos. | |
The image data set is expected to reside in JPEG files located in the | |
following directory structure. | |
data_dir/image0.jpeg | |
data_dir/image1.jpg | |
... | |
label_dir/weird-image.jpeg | |
label_dir/my-image.jpeg | |
... | |
This TensorFlow script converts the training and evaluation data into | |
a sharded data set consisting of TFRecord files | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from datetime import datetime | |
import os | |
import random | |
import sys | |
import threading | |
import numpy as np | |
import tensorflow as tf | |
tf.app.flags.DEFINE_integer('num_threads', 4, | |
'Number of threads to preprocess the images.') | |
FLAGS = tf.app.flags.FLAGS | |
def _int64_feature(value): | |
"""Wrapper for inserting int64 features into Example proto.""" | |
if not isinstance(value, list): | |
value = [value] | |
return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) | |
def _bytes_feature(value): | |
"""Wrapper for inserting bytes features into Example proto.""" | |
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) | |
def _convert_to_example(orig_filename,label_filename, orig_image_buffer, label_image_buffer, | |
orig_height, orig_width, label_height, label_width): | |
"""Build an Example proto for an example. | |
Args: | |
orig_filename: string, path to an image file, e.g., '/path/to/example.JPG' | |
label_filename: string, path to an image file, e.g., '/path/to/example.JPG' | |
orig_image_buffer: string, JPEG encoding of RGB image | |
label_image_buffer: string, JPEG encoding of RGB image | |
orig_height: integer, image height in pixels | |
orig_width: integer, image width in pixels | |
label_height: integer, image height in pixels | |
label_width: integer, image width in pixels | |
Returns: | |
Example proto | |
""" | |
colorspace = 'RGB' | |
channels = 3 | |
image_format = 'JPEG' | |
example = tf.train.Example(features=tf.train.Features(feature={ | |
'orig/image/height': _int64_feature(orig_height), | |
'orig/image/width': _int64_feature(orig_width), | |
'orig/image/colorspace': _bytes_feature(tf.compat.as_bytes(colorspace)), | |
'orig/image/channels': _int64_feature(channels), | |
'orig/image/format': _bytes_feature(tf.compat.as_bytes(image_format)), | |
'orig/image/filename': _bytes_feature(tf.compat.as_bytes(os.path.basename(orig_filename))), | |
'orig/image/encoded': _bytes_feature(tf.compat.as_bytes(orig_image_buffer)), | |
'label/image/height': _int64_feature(label_height), | |
'label/image/width': _int64_feature(label_width), | |
'label/image/colorspace': _bytes_feature(tf.compat.as_bytes(colorspace)), | |
'label/image/channels': _int64_feature(channels), | |
'label/image/format': _bytes_feature(tf.compat.as_bytes(image_format)), | |
'label/image/filename': _bytes_feature(tf.compat.as_bytes(os.path.basename(label_filename))), | |
'label/image/encoded': _bytes_feature(tf.compat.as_bytes(label_image_buffer)) })) | |
return example | |
class ImageCoder(object): | |
"""Helper class that provides TensorFlow image coding utilities.""" | |
def __init__(self): | |
# Create a single Session to run all image coding calls. | |
self._sess = tf.Session() | |
# Initializes function that converts PNG to JPEG data. | |
self._png_data = tf.placeholder(dtype=tf.string) | |
image = tf.image.decode_png(self._png_data, channels=3) | |
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100) | |
# Initializes function that decodes RGB JPEG data. | |
self._decode_jpeg_data = tf.placeholder(dtype=tf.string) | |
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) | |
def png_to_jpeg(self, image_data): | |
return self._sess.run(self._png_to_jpeg, | |
feed_dict={self._png_data: image_data}) | |
def decode_jpeg(self, image_data): | |
image = self._sess.run(self._decode_jpeg, | |
feed_dict={self._decode_jpeg_data: image_data}) | |
assert len(image.shape) == 3 | |
assert image.shape[2] == 3 | |
return image | |
def _is_png(filename): | |
"""Determine if a file contains a PNG format image. | |
Args: | |
filename: string, path of the image file. | |
Returns: | |
boolean indicating if the image is a PNG. | |
""" | |
return '.png' in filename | |
def _process_image(filename, coder): | |
"""Process a single image file. | |
Args: | |
filename: string, path to an image file e.g., '/path/to/example.JPG'. | |
coder: instance of ImageCoder to provide TensorFlow image coding utils. | |
Returns: | |
image_buffer: string, JPEG encoding of RGB image. | |
height: integer, image height in pixels. | |
width: integer, image width in pixels. | |
""" | |
# Read the image file. | |
with tf.gfile.FastGFile(filename, 'r') as f: | |
image_data = f.read() | |
# Convert any PNG to JPEG's for consistency. | |
if _is_png(filename): | |
print('Converting PNG to JPEG for %s' % filename) | |
image_data = coder.png_to_jpeg(image_data) | |
# Decode the RGB JPEG. | |
image = coder.decode_jpeg(image_data) | |
# Check that image converted to RGB | |
assert len(image.shape) == 3 | |
height = image.shape[0] | |
width = image.shape[1] | |
assert image.shape[2] == 3 | |
return image_data, height, width | |
def _process_image_files_batch(coder, thread_index, ranges, name, orig_filenames, label_filenames, num_shards, output_directory): | |
"""Processes and saves list of images as TFRecord in 1 thread. | |
Args: | |
coder: instance of ImageCoder to provide TensorFlow image coding utils. | |
thread_index: integer, unique batch to run index is within [0, len(ranges)). | |
ranges: list of pairs of integers specifying ranges of each batches to | |
analyze in parallel. | |
name: string, unique identifier specifying the data set | |
orig_filenames: list of strings; each string is a path to an image file | |
label_filenames: list of strings; each string is a path to an image file | |
num_shards: integer number of shards for this data set. | |
""" | |
# Each thread produces N shards where N = int(num_shards / num_threads). | |
# For instance, if num_shards = 128, and the num_threads = 2, then the first | |
# thread would produce shards [0, 64). | |
num_threads = len(ranges) | |
assert not num_shards % num_threads | |
num_shards_per_batch = int(num_shards / num_threads) | |
shard_ranges = np.linspace(ranges[thread_index][0], | |
ranges[thread_index][1], | |
num_shards_per_batch + 1).astype(int) | |
num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0] | |
counter = 0 | |
for s in range(num_shards_per_batch): | |
# Generate a sharded version of the file name, e.g. 'train-00002-of-00010' | |
shard = thread_index * num_shards_per_batch + s | |
output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards) | |
output_file = os.path.join(output_directory, output_filename) | |
writer = tf.python_io.TFRecordWriter(output_file) | |
shard_counter = 0 | |
files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) | |
for i in files_in_shard: | |
orig = orig_filenames[i] | |
label = label_filenames[i] | |
orig_image_buffer, orig_height, orig_width = _process_image(orig, coder) | |
label_image_buffer, label_height, label_width = _process_image(label, coder) | |
example = _convert_to_example(orig,label, orig_image_buffer, label_image_buffer, | |
orig_height, orig_width, label_height, label_width) | |
writer.write(example.SerializeToString()) | |
shard_counter += 1 | |
counter += 1 | |
if not counter % 1000: | |
print('%s [thread %d]: Processed %d of %d images in thread batch.' % | |
(datetime.now(), thread_index, counter, num_files_in_thread)) | |
sys.stdout.flush() | |
writer.close() | |
print('%s [thread %d]: Wrote %d images to %s' % | |
(datetime.now(), thread_index, shard_counter, output_file)) | |
sys.stdout.flush() | |
shard_counter = 0 | |
print('%s [thread %d]: Wrote %d images to %d shards.' % | |
(datetime.now(), thread_index, counter, num_files_in_thread)) | |
sys.stdout.flush() | |
def _process_image_files(name, orig_filenames, label_filenames, num_shards, output_directory): | |
"""Process and save list of images as TFRecord of Example protos. | |
Args: | |
name: string, unique identifier specifying the data set | |
orig_filenames: list of strings; each string is a path to an image file | |
label_filenames: list of strings; each string is a path to an image file | |
num_shards: integer number of shards for this data set. | |
output_directory : Directory for output files | |
""" | |
spacing = np.linspace(0, len(orig_filenames), FLAGS.num_threads + 1).astype(np.int) | |
ranges = [] | |
for i in range(len(spacing) - 1): | |
ranges.append([spacing[i], spacing[i+1]]) | |
# Launch a thread for each batch. | |
print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges)) | |
sys.stdout.flush() | |
# Create a mechanism for monitoring when all threads are finished. | |
coord = tf.train.Coordinator() | |
# Create a generic TensorFlow-based utility for converting all image codings. | |
coder = ImageCoder() | |
threads = [] | |
for thread_index in range(len(ranges)): | |
args = (coder, thread_index, ranges, name, orig_filenames, label_filenames, num_shards, output_directory) | |
t = threading.Thread(target=_process_image_files_batch, args=args) | |
t.start() | |
threads.append(t) | |
# Wait for all the threads to terminate. | |
coord.join(threads) | |
print('%s: Finished writing all %d images in data set.' % | |
(datetime.now(), len(orig_filenames))) | |
sys.stdout.flush() | |
def main(orignal_image_folder, label_image_folder, output_directory, num_shards): | |
orig_img_paths = [os.path.join(orignal_image_folder,im) for im in os.listdir(orignal_image_folder) if os.path.isfile (os.path.join(orignal_image_folder,im))] | |
label_img_paths = [os.path.join(label_image_folder,im) for im in os.listdir(label_image_folder) if os.path.isfile(os.path.join(label_image_folder,im))] | |
_process_image_files("cool", orig_img_paths, label_img_paths, num_shards, output_directory) | |
if __name__ == '__main__': | |
if len(sys.argv) < 5: | |
print ("Usage imagesToTfrecords <input_images_folder> <label_images_folder> <output_folder> <num partitions (multiples of 4)>") | |
else: | |
main(sys.argv[1], sys.argv[2], sys.argv[3], int(sys.argv[4])) | |
# For reading files | |
# import tensorflow as tf | |
# import matplotlib.pyplot as plt | |
# filename = "../Data/tfrecords/cool-00000-of-00004" | |
# sess = tf.Session() | |
# for serialized_example in tf.python_io.tf_record_iterator(filename): | |
# example = tf.train.Example() | |
# example.ParseFromString(serialized_example) | |
# # traverse the Example format to get data | |
# img = example.features.feature['origimage/encoded'] | |
# # get the data out of tf record | |
# orignal_image_height = example.features.feature['orig/image/height'] | |
# orignal_image_width = example.features.feature['orig/image/width'] | |
# orignal_image_colors = example.features.feature['orig/image/colorspace'] | |
# orignal_image_channels = example.features.feature['orig/image/channels'] | |
# orignal_image_format = example.features.feature['orig/image/format'] | |
# orignal_image_filename = example.features.feature['orig/image/filename'] | |
# orignal_image_data = example.features.feature['orig/image/encoded'] | |
# noisy_image_height = example.features.feature['label/image/height'] | |
# noisy_image_width = example.features.feature['label/image/width'] | |
# noisy_image_colors = example.features.feature['label/image/colorspace'] | |
# noisy_image_channels = example.features.feature['label/image/channels'] | |
# noisy_image_format = example.features.feature['label/image/format'] | |
# noisy_image_filename = example.features.feature['label/image/filename'] | |
# noisy_image_data = example.features.feature['label/image/encoded'] | |
# orignal_image = sess.run(tf.image.decode_jpeg(orignal_image_data.bytes_list.value[0], channels=3)) | |
# noisy_image = sess.run(tf.image.decode_jpeg(noisy_image_data.bytes_list.value[0], channels=3)) | |
# plt.subplot(121) | |
# plt.title("Image Name : " + str(orignal_image_filename.bytes_list.value[0]) + "\n" + | |
# "Image Height : " + str(orignal_image_height.int64_list.value[0]) + "\n" + | |
# "Image Weight : " + str(orignal_image_width.int64_list.value[0]) + "\n" + | |
# "Image ColourSpace : " + str(orignal_image_colors.bytes_list.value[0]) + "\n" + | |
# "Image Channels : " + str(orignal_image_channels.int64_list.value[0]) + "\n" + | |
# "Image format : " + str(orignal_image_format.bytes_list.value[0]) + "\n") | |
# plt.imshow(orignal_image) | |
# plt.subplot(122) | |
# plt.title("Image Name : " + str(noisy_image_filename.bytes_list.value[0]) + "\n" + | |
# "Image Height : " + str(noisy_image_height.int64_list.value[0]) + "\n" + | |
# "Image Weight : " + str(noisy_image_width.int64_list.value[0]) + "\n" + | |
# "Image ColourSpace : " + str(noisy_image_colors.bytes_list.value[0]) + "\n" + | |
# "Image Channels : " + str(noisy_image_channels.int64_list.value[0]) + "\n" + | |
# "Image format : " + str(noisy_image_format.bytes_list.value[0]) + "\n") | |
# plt.imshow(noisy_image) | |
# plt.show() | |
# break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment