Skip to content

Instantly share code, notes, and snippets.

# Network buffer optimizations
net.core.rmem_default = 262144
net.core.rmem_max = 16777216
net.core.wmem_default = 262144
net.core.wmem_max = 16777216
net.core.netdev_max_backlog = 5000
net.core.netdev_budget = 600
# TCP optimizations
net.ipv4.tcp_rmem = 4096 65536 16777216
[Unit]
Description=qBittorrent Command Line Client
After=network.target
[Service]
Type=simple
User=qbittorrent-nox
Group=qbittorrent-nox
UMask=007
WorkingDirectory=/var/lib/qbittorrent-nox
[Application]
FileLogger\Age=1
FileLogger\AgeType=1
FileLogger\Backup=true
FileLogger\DeleteOld=true
FileLogger\Enabled=true
FileLogger\MaxSizeBytes=66560
FileLogger\Path=/var/lib/qbittorrent-nox/.local/share/qBittorrent/logs
[BitTorrent]
unbind r
bind r source-file ~/.tmux.conf
set -g default-terminal "tmux-256color"
set -ag terminal-overrides ",xterm-256color:Tc"
bind-key -T copy-mode-vi MouseDragEnd1Pane send-keys -X copy-pipe-and-cancel "<clipboard_program>"
set -g prefix C-s
setw -g mode-keys vi
set -g mouse on
set-option -g status-position top
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
X_b = np.c_[np.ones((100, 1)), X]
theta_best = np.linalg.inv(X_b.T @ X_b) @ (X_b.T @ y)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(42)
data = {
"Age": np.random.randint(18, 70, 100),
"Salary": np.random.randint(20000, 120000, 100),
"Experience": np.random.randint(1, 40, 100),
00:00.000 --> 00:04.960
It's no secret that open AI is not open based on the English translation of the word.
00:04.960 --> 00:07.880
Most of their tech is not open source and not open to the public.
00:07.880 --> 00:11.000
In fact, to use their AI, the only thing that opens is your wallet.
00:11.000 --> 00:14.440
FROM python:3.12.3
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY app.py .
students = [
[12102130600101, 'Bhavya', 'CS', ['PWP','DAA','CAD'] , [80, 85, 90], [70, 75, 80], [90, 95, 100]],
[12102130600102, 'Dhruv', 'IT', ['PWP','DAA','CAD'] , [75, 80, 85], [65, 70, 75], [85, 90, 95]],
[12102130600103, 'Dhara', 'ECE', ['PWP','DAA','CAD'] , [85, 90, 95], [75, 80, 85], [95, 100, 100]],
[12102130600104, 'Kayur', 'ME', ['PWP','DAA','CAD'] , [70, 75, 80], [60, 65, 70], [80, 85, 90]],
]
student_dict = {}
for student in students:
#include <iostream>
#include <cuda_runtime.h>
const int N = 256; // Matrix size (N x N)
// Kernel function for matrix multiplication
__global__ void matrixMultiply(float* A, float* B, float* C, int n) {
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;