Skip to content

Instantly share code, notes, and snippets.

@Bhavya031
Created December 24, 2024 04:58
Show Gist options
  • Save Bhavya031/ccf2e29210d57cdbafd9683b17260dde to your computer and use it in GitHub Desktop.
Save Bhavya031/ccf2e29210d57cdbafd9683b17260dde to your computer and use it in GitHub Desktop.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(42)
data = {
"Age": np.random.randint(18, 70, 100),
"Salary": np.random.randint(20000, 120000, 100),
"Experience": np.random.randint(1, 40, 100),
"Department": np.random.choice(["HR", "Finance", "Engineering", "Marketing"], 100)
}
df = pd.DataFrame(data)
print("### Summary Statistics ###")
print(df.describe())
print("\n### Frequency Counts ###")
print(df["Department"].value_counts())
print("\n### Missing Values ###")
print(df.isnull().sum())
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
sns.histplot(df["Age"], kde=True, bins=15, color="blue")
plt.title("Age Distribution")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.subplot(1, 2, 2)
sns.boxplot(data=df, y="Salary", color="orange")
plt.title("Salary Boxplot")
plt.ylabel("Salary")
plt.tight_layout()
plt.show()
correlation = df.corr()
print("\n### Correlation Matrix ###")
print(correlation)
plt.figure(figsize=(8, 6))
sns.heatmap(correlation, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment