-
-
Save Blaisorblade/96b120a204d1231346ef22fcc5e6e407 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module LP where | |
open import Data.Empty using () renaming (⊥ to Empty) | |
open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂) | |
open import Data.Unit using () renaming (⊤ to Unit ; tt to unit) | |
open import Relation.Binary.PropositionalEquality as P -- using (_≡_ ; refl; cong₂; subst) | |
data Cx (X : Set) : Set where | |
∅ : Cx X | |
_,_ : Cx X → X → Cx X | |
data Var (X : Set) : Cx X → X → Set where | |
top : ∀ {Γ A} → Var X (Γ , A) A | |
pop : ∀ {Γ A B} → Var X Γ A → Var X (Γ , B) A | |
x₀ : ∀ {X Γ A} → Var X (Γ , A) A | |
x₀ = top | |
x₁ : ∀ {X Γ A B} → Var X ((Γ , A) , B) A | |
x₁ = pop x₀ | |
x₂ : ∀ {X Γ A B C} → Var X (((Γ , A) , B) , C) A | |
x₂ = pop x₁ | |
module S4 where | |
data Ty : Set where | |
⊥ : Ty | |
_⊃_ : Ty → Ty → Ty | |
_∧_ : Ty → Ty → Ty | |
□_ : Ty → Ty | |
data Tm (Γ Δ : Cx Ty) : Ty → Set where | |
var : ∀ {A} → Var Ty Γ A → Tm Γ Δ A | |
lam : ∀ {A B} → Tm (Γ , A) Δ B → Tm Γ Δ (A ⊃ B) | |
app : ∀ {A B} → Tm Γ Δ (A ⊃ B) → Tm Γ Δ A → Tm Γ Δ B | |
*var : ∀ {A} → Var Ty Δ A → Tm Γ Δ A | |
up : ∀ {A} → Tm ∅ Δ A → Tm Γ Δ (□ A) | |
down : ∀ {A C} → Tm Γ Δ (□ A) → Tm Γ (Δ , A) C → Tm Γ Δ C | |
pair : ∀ {A B} → Tm Γ Δ A → Tm Γ Δ B → Tm Γ Δ (A ∧ B) | |
fst : ∀ {A B} → Tm Γ Δ (A ∧ B) → Tm Γ Δ A | |
snd : ∀ {A B} → Tm Γ Δ (A ∧ B) → Tm Γ Δ B | |
⟦_⟧ᴬ : Ty → Set | |
⟦ ⊥ ⟧ᴬ = Empty | |
⟦ A ⊃ B ⟧ᴬ = ⟦ A ⟧ᴬ → ⟦ B ⟧ᴬ | |
⟦ A ∧ B ⟧ᴬ = ⟦ A ⟧ᴬ × ⟦ B ⟧ᴬ | |
⟦ □ A ⟧ᴬ = ⟦ A ⟧ᴬ | |
⟦_⟧ᴳ : Cx Ty → Set | |
⟦ ∅ ⟧ᴳ = Unit | |
⟦ (Γ , A) ⟧ᴳ = ⟦ Γ ⟧ᴳ × ⟦ A ⟧ᴬ | |
⟦_⟧ˣ : ∀ {Γ A} → Var Ty Γ A → ⟦ Γ ⟧ᴳ → ⟦ A ⟧ᴬ | |
⟦ top ⟧ˣ (γ , a) = a | |
⟦ pop x ⟧ˣ (γ , b) = ⟦ x ⟧ˣ γ | |
⟦_⟧ : ∀ {Γ Δ A} → Tm Γ Δ A → ⟦ Γ ⟧ᴳ → ⟦ Δ ⟧ᴳ → ⟦ A ⟧ᴬ | |
⟦ var x ⟧ γ δ = ⟦ x ⟧ˣ γ | |
⟦ lam t ⟧ γ δ = λ a → ⟦ t ⟧ (γ , a) δ | |
⟦ app t₁ t₂ ⟧ γ δ = (⟦ t₁ ⟧ γ δ) (⟦ t₂ ⟧ γ δ) | |
⟦ *var x ⟧ γ δ = ⟦ x ⟧ˣ δ | |
⟦ up t ⟧ γ δ = ⟦ t ⟧ unit δ | |
⟦ down t₁ t₂ ⟧ γ δ = ⟦ t₂ ⟧ γ (δ , ⟦ t₁ ⟧ γ δ) | |
⟦ pair t₁ t₂ ⟧ γ δ = (⟦ t₁ ⟧ γ δ , ⟦ t₂ ⟧ γ δ) | |
⟦ fst t ⟧ γ δ = proj₁ (⟦ t ⟧ γ δ) | |
⟦ snd t ⟧ γ δ = proj₂ (⟦ t ⟧ γ δ) | |
infixr 5 _⊃_ | |
infixl 10 _∧_ | |
v₀ : ∀ {Γ Δ A} → Tm (Γ , A) Δ A | |
v₀ = var x₀ | |
v₁ : ∀ {Γ Δ A B} → Tm ((Γ , A) , B) Δ A | |
v₁ = var x₁ | |
v₂ : ∀ {Γ Δ A B C} → Tm (((Γ , A) , B) , C) Δ A | |
v₂ = var x₂ | |
*v₀ : ∀ {Γ Δ A} → Tm Γ (Δ , A) A | |
*v₀ = *var x₀ | |
*v₁ : ∀ {Γ Δ A B} → Tm Γ ((Δ , A) , B) A | |
*v₁ = *var x₁ | |
*v₂ : ∀ {Γ Δ A B C} → Tm Γ (((Δ , A) , B) , C) A | |
*v₂ = *var x₂ | |
module Examples where | |
I : ∀ {Γ Δ A} → Tm Γ Δ (A ⊃ A) | |
I = lam v₀ | |
K : ∀ {Γ Δ A B} → Tm Γ Δ (A ⊃ B ⊃ A) | |
K = lam (lam v₁) | |
S : ∀ {Γ Δ A B C} → Tm Γ Δ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) | |
S = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) | |
D : ∀ {Γ Δ A B} → Tm Γ Δ (□ (A ⊃ B) ⊃ □ A ⊃ □ B) | |
D = lam (lam (down v₁ (down v₀ (up (app *v₁ *v₀))))) | |
T : ∀ {Γ Δ A} → Tm Γ Δ (□ A ⊃ A) | |
T = lam (down v₀ *v₀) | |
#4 : ∀ {Γ Δ A} → Tm Γ Δ (□ A ⊃ □ □ A) | |
#4 = lam (down v₀ (up (up *v₀))) | |
E1 : ∀ {Γ Δ A} → Tm Γ Δ (□ (□ A ⊃ A)) | |
E1 = up T | |
E2 : ∀ {Γ Δ A} → Tm Γ Δ (□ (□ A ⊃ □ □ A)) | |
E2 = up #4 | |
E3 : ∀ {Γ Δ A B} → Tm Γ Δ (□ □ (A ⊃ B ⊃ A ∧ B)) | |
E3 = up (up (lam (lam (pair v₁ v₀)))) | |
E4 : ∀ {Γ Δ A B} → Tm Γ Δ (□ (□ A ⊃ □ B ⊃ □ □ (A ∧ B))) | |
E4 = up (lam (lam (down v₁ (down v₀ (up (up (pair *v₁ *v₀))))))) | |
mutual | |
data Ty : Set where | |
⊥ : Ty | |
_⊃_ : Ty → Ty → Ty | |
_∧_ : Ty → Ty → Ty | |
_∴_ : ∀ {Ξ A} → Tm ∅ Ξ A → Ty → Ty | |
data Tm (Γ Δ : Cx Ty) : Ty → Set where | |
var : ∀ {A} → Var Ty Γ A → Tm Γ Δ A | |
lam : ∀ {A B} → Tm (Γ , A) Δ B → Tm Γ Δ (A ⊃ B) | |
app : ∀ {A B} → Tm Γ Δ (A ⊃ B) → Tm Γ Δ A → Tm Γ Δ B | |
*var : ∀ {A} → Var Ty Δ A → Tm Γ Δ A | |
up : ∀ {A} → (t : Tm ∅ Δ A) → Tm Γ Δ (t ∴ A) | |
down : ∀ {Ξ A C} {t : Tm ∅ Ξ A} → Tm Γ Δ (t ∴ A) → Tm Γ (Δ , A) C → Tm Γ Δ C | |
pair : ∀ {A B} → Tm Γ Δ A → Tm Γ Δ B → Tm Γ Δ (A ∧ B) | |
fst : ∀ {A B} → Tm Γ Δ (A ∧ B) → Tm Γ Δ A | |
snd : ∀ {A B} → Tm Γ Δ (A ∧ B) → Tm Γ Δ B | |
syntax lam t = ƛ t | |
syntax app t₁ t₂ = t₁ ∙ t₂ | |
syntax up t = ⇑ t | |
syntax down t₁ t₂ = ⇓⟨ t₁ ∣ t₂ ⟩ | |
syntax pair t₁ t₂ = p⟨ t₁ , t₂ ⟩ | |
syntax fst t = π₀ t | |
syntax snd t = π₁ t | |
infixr 5 _⊃_ | |
infixl 10 _∧_ | |
infixl 10 app | |
infixr 15 _∴_ | |
v₀ : ∀ {Γ Δ A} → Tm (Γ , A) Δ A | |
v₀ = var x₀ | |
v₁ : ∀ {Γ Δ A B} → Tm ((Γ , A) , B) Δ A | |
v₁ = var x₁ | |
v₂ : ∀ {Γ Δ A B C} → Tm (((Γ , A) , B) , C) Δ A | |
v₂ = var x₂ | |
*v₀ : ∀ {Γ Δ A} → Tm Γ (Δ , A) A | |
*v₀ = *var x₀ | |
*v₁ : ∀ {Γ Δ A B} → Tm Γ ((Δ , A) , B) A | |
*v₁ = *var x₁ | |
*v₂ : ∀ {Γ Δ A B C} → Tm Γ (((Δ , A) , B) , C) A | |
*v₂ = *var x₂ | |
[vᵢ]_ : Ty → Ty | |
[vᵢ] A = _∴_ {Ξ = (∅ , A)} *v₀ A | |
module Examples where | |
I : ∀ {Γ Δ A} → Tm Γ Δ (A ⊃ A) | |
I = lam v₀ | |
K : ∀ {Γ Δ A B} → Tm Γ Δ (A ⊃ B ⊃ A) | |
K = lam (lam v₁) | |
S : ∀ {Γ Δ A B C} → Tm Γ Δ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) | |
S = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) | |
D : ∀ {Γ Δ A B} → Tm Γ Δ ([vᵢ] (A ⊃ B) ⊃ [vᵢ] A ⊃ app *v₁ *v₀ ∴ B) | |
D = lam (lam (down v₁ (down v₀ (up (app *v₁ *v₀))))) | |
T : ∀ {Γ Δ A} → Tm Γ Δ ([vᵢ] A ⊃ A) | |
T = lam (down v₀ *v₀) | |
#4 : ∀ {Γ Δ A} → Tm Γ Δ ([vᵢ] A ⊃ up *v₀ ∴ *v₀ ∴ A) | |
#4 = lam (down v₀ (up (up *v₀))) | |
E1 : ∀ {Γ Δ A} → Tm Γ Δ (T ∴ ([vᵢ] A ⊃ A)) | |
E1 = up T | |
E2 : ∀ {Γ Δ A} → Tm Γ Δ (#4 ∴ ([vᵢ] A ⊃ up *v₀ ∴ *v₀ ∴ A)) | |
E2 = up #4 | |
E3 : ∀ {Γ Δ A B} → | |
Tm Γ Δ (up (lam (lam (pair v₁ v₀))) ∴ lam (lam (pair v₁ v₀)) ∴ (A ⊃ B ⊃ A ∧ B)) | |
E3 = up (up (lam (lam (pair v₁ v₀)))) | |
E4 : ∀ {Γ Δ A B} → | |
Tm Γ Δ (lam (lam (down v₁ (down v₀ (up (up (pair *v₁ *v₀)))))) ∴ | |
([vᵢ] A ⊃ [vᵢ] B ⊃ up (pair *v₁ *v₀) ∴ pair *v₁ *v₀ ∴ (A ∧ B))) | |
E4 = up (lam (lam (down v₁ (down v₀ (up (up (pair *v₁ *v₀))))))) | |
module AltArtemovNotation where | |
I : ∀ {Γ Δ A} → Tm Γ Δ (A ⊃ A) | |
I = ƛ v₀ | |
K : ∀ {Γ Δ A B} → Tm Γ Δ (A ⊃ B ⊃ A) | |
K = ƛ ƛ v₁ | |
S : ∀ {Γ Δ A B C} → Tm Γ Δ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) | |
S = ƛ ƛ ƛ ((v₂ ∙ v₀) ∙ (v₁ ∙ v₀)) | |
D : ∀ {Γ Δ A B} → Tm Γ Δ ([vᵢ] (A ⊃ B) ⊃ [vᵢ] A ⊃ (*v₁ ∙ *v₀) ∴ B) | |
D = ƛ ƛ ⇓⟨ v₁ ∣ ⇓⟨ v₀ ∣ ⇑ (*v₁ ∙ *v₀) ⟩ ⟩ | |
T : ∀ {Γ Δ A} → Tm Γ Δ ([vᵢ] A ⊃ A) | |
T = ƛ ⇓⟨ v₀ ∣ *v₀ ⟩ | |
#4 : ∀ {Γ Δ A} → Tm Γ Δ ([vᵢ] A ⊃ ⇑ *v₀ ∴ *v₀ ∴ A) | |
#4 = ƛ ⇓⟨ v₀ ∣ ⇑ ⇑ *v₀ ⟩ | |
E1 : ∀ {Γ Δ A} → Tm Γ Δ (T ∴ ([vᵢ] A ⊃ A)) | |
E1 = ⇑ T | |
E2 : ∀ {Γ Δ A} → Tm Γ Δ (#4 ∴ ([vᵢ] A ⊃ ⇑ *v₀ ∴ *v₀ ∴ A)) | |
E2 = ⇑ #4 | |
E3 : ∀ {Γ Δ A B} → | |
Tm Γ Δ (⇑ ƛ ƛ p⟨ v₁ , v₀ ⟩ ∴ ƛ ƛ p⟨ v₁ , v₀ ⟩ ∴ (A ⊃ B ⊃ A ∧ B)) | |
E3 = ⇑ ⇑ ƛ ƛ p⟨ v₁ , v₀ ⟩ | |
E4 : ∀ {Γ Δ A B} → | |
Tm Γ Δ (ƛ ƛ ⇓⟨ v₁ ∣ ⇓⟨ v₀ ∣ ⇑ ⇑ p⟨ *v₁ , *v₀ ⟩ ⟩ ⟩ ∴ | |
([vᵢ] A ⊃ [vᵢ] B ⊃ ⇑ p⟨ *v₁ , *v₀ ⟩ ∴ p⟨ *v₁ , *v₀ ⟩ ∴ (A ∧ B))) | |
E4 = ⇑ ƛ ƛ ⇓⟨ v₁ ∣ ⇓⟨ v₀ ∣ ⇑ ⇑ p⟨ *v₁ , *v₀ ⟩ ⟩ ⟩ | |
mutual | |
⟦_⟧ᴬ : Ty → Set | |
⟦ ⊥ ⟧ᴬ = Empty | |
⟦ A ⊃ B ⟧ᴬ = ⟦ A ⟧ᴬ → ⟦ B ⟧ᴬ | |
⟦ A ∧ B ⟧ᴬ = ⟦ A ⟧ᴬ × ⟦ B ⟧ᴬ | |
⟦ t ∴ A ⟧ᴬ = ⟦ A ⟧ᴬ | |
⟦_⟧ᴳ : Cx Ty → Set | |
⟦ ∅ ⟧ᴳ = Unit | |
⟦ (Γ , A) ⟧ᴳ = ⟦ Γ ⟧ᴳ × ⟦ A ⟧ᴬ | |
⟦_⟧ˣ : ∀ {Γ A} → Var Ty Γ A → ⟦ Γ ⟧ᴳ → ⟦ A ⟧ᴬ | |
⟦ top ⟧ˣ (γ , a) = a | |
⟦ pop x ⟧ˣ (γ , b) = ⟦ x ⟧ˣ γ | |
⟦_⟧ : ∀ {Γ Δ A} → Tm Γ Δ A → ⟦ Γ ⟧ᴳ → ⟦ Δ ⟧ᴳ → ⟦ A ⟧ᴬ | |
⟦ var x ⟧ γ δ = ⟦ x ⟧ˣ γ | |
⟦ lam t ⟧ γ δ = λ a → ⟦ t ⟧ (γ , a) δ | |
⟦ app t₁ t₂ ⟧ γ δ = (⟦ t₁ ⟧ γ δ) (⟦ t₂ ⟧ γ δ) | |
⟦ *var x ⟧ γ δ = ⟦ x ⟧ˣ δ | |
⟦ up t ⟧ γ δ = ⟦ t ⟧ unit δ | |
⟦ down t₁ t₂ ⟧ γ δ = ⟦ t₂ ⟧ γ (δ , ⟦ t₁ ⟧ γ δ) | |
⟦ pair t₁ t₂ ⟧ γ δ = (⟦ t₁ ⟧ γ δ , ⟦ t₂ ⟧ γ δ) | |
⟦ fst t ⟧ γ δ = proj₁ (⟦ t ⟧ γ δ) | |
⟦ snd t ⟧ γ δ = proj₂ (⟦ t ⟧ γ δ) | |
open import Relation.Binary.HeterogeneousEquality as H | |
hcongprod : ∀ {A B C D : Set} {a : A} {b : B} → (p₁ : A ≅ C) → (p₂ : D ≅ B) → | |
b ≡ H.subst (λ x → x) p₂ (proj₂ (H.subst (λ x → x) (H.cong₂ _×_ p₁ (H.sym p₂)) (a , b))) | |
hcongprod refl refl = refl | |
congprod₂ : ∀ {A B C D : Set} (a : A) (b : B) → (p₁ : A ≡ C) → (p₂ : B ≡ D) → | |
b ≡ P.subst (λ x → x) (P.sym p₂) (proj₂ (P.subst (λ x → x) (P.cong₂ _×_ p₁ p₂) (a , b))) | |
congprod₂ a b refl refl = refl | |
module ForgetfulProjection where | |
⌊_⌋ᴬ : Ty → S4.Ty | |
⌊ ⊥ ⌋ᴬ = S4.⊥ | |
⌊ A ⊃ B ⌋ᴬ = ⌊ A ⌋ᴬ S4.⊃ ⌊ B ⌋ᴬ | |
⌊ A ∧ B ⌋ᴬ = ⌊ A ⌋ᴬ S4.∧ ⌊ B ⌋ᴬ | |
⌊ t ∴ A ⌋ᴬ = S4.□ ⌊ A ⌋ᴬ | |
⌊_⌋ᴬ-sound : ∀ t → ⟦ t ⟧ᴬ ≡ S4.⟦ ⌊ t ⌋ᴬ ⟧ᴬ | |
⌊ ⊥ ⌋ᴬ-sound = refl | |
⌊ S ⊃ T ⌋ᴬ-sound = P.cong₂ (λ x y → x → y) ⌊ S ⌋ᴬ-sound ⌊ T ⌋ᴬ-sound | |
⌊ S ∧ T ⌋ᴬ-sound = P.cong₂ _×_ ⌊ S ⌋ᴬ-sound ⌊ T ⌋ᴬ-sound | |
⌊ x ∴ T ⌋ᴬ-sound = ⌊ T ⌋ᴬ-sound | |
⌊_⌋ᴳ : Cx Ty → Cx S4.Ty | |
⌊ ∅ ⌋ᴳ = ∅ | |
⌊ (Γ , A) ⌋ᴳ = (⌊ Γ ⌋ᴳ , ⌊ A ⌋ᴬ) | |
⌊_⌋ᴳ-sound : ∀ Γ → ⟦ Γ ⟧ᴳ ≡ S4.⟦ ⌊ Γ ⌋ᴳ ⟧ᴳ | |
⌊ ∅ ⌋ᴳ-sound = refl | |
⌊ Γ , τ ⌋ᴳ-sound = P.cong₂ _×_ ⌊ Γ ⌋ᴳ-sound ⌊ τ ⌋ᴬ-sound | |
⌊_⌋ˣ : ∀ {Γ A} → Var Ty Γ A → Var S4.Ty ⌊ Γ ⌋ᴳ ⌊ A ⌋ᴬ | |
⌊ top ⌋ˣ = top | |
⌊ pop x ⌋ˣ = pop ⌊ x ⌋ˣ | |
⌊_⌋ : ∀ {Γ Δ A} → Tm Γ Δ A → S4.Tm ⌊ Γ ⌋ᴳ ⌊ Δ ⌋ᴳ ⌊ A ⌋ᴬ | |
⌊ var x ⌋ = S4.var ⌊ x ⌋ˣ | |
⌊ lam t ⌋ = S4.lam ⌊ t ⌋ | |
⌊ app t₁ t₂ ⌋ = S4.app ⌊ t₁ ⌋ ⌊ t₂ ⌋ | |
⌊ *var x ⌋ = S4.*var ⌊ x ⌋ˣ | |
⌊ up t ⌋ = S4.up ⌊ t ⌋ | |
⌊ down t₁ t₂ ⌋ = S4.down ⌊ t₁ ⌋ ⌊ t₂ ⌋ | |
⌊ pair t₁ t₂ ⌋ = S4.pair ⌊ t₁ ⌋ ⌊ t₂ ⌋ | |
⌊ fst t ⌋ = S4.fst ⌊ t ⌋ | |
⌊ snd t ⌋ = S4.snd ⌊ t ⌋ | |
-- Further correctness lemmas. Having to use subst is a pain. | |
cast : ∀ {t u : Set} → t ≡ u → t → u -- u → t | |
cast p = P.subst (λ x → x) p | |
cast′ : ∀ {t u : Set} → t ≡ u → u → t | |
cast′ t≡u = cast (P.sym t≡u) | |
congprod₁ : ∀ {A B C D : Set} (a : A) (b : B) → (p₁ : A ≡ C) → (p₂ : B ≡ D) → | |
a ≡ cast′ p₁ (proj₁ (cast (P.cong₂ _×_ p₁ p₂) (a , b))) | |
congprod₁ a b refl refl = refl | |
congfprod₁ : ∀ {X Y A B C D : Set} (a : X) (b : B) → (p₁ : A ≡ C) → (p₂ : B ≡ D) → (p₃ : X ≡ Y) → (f : X → A) → (g : Y → C) → | |
(fgrel : f a ≡ cast′ p₁ (g (cast p₃ a))) → | |
cast′ p₁ (proj₁ (cast (P.cong₂ _×_ p₁ p₂) (f a , b))) ≡ cast′ p₁ (g (proj₁ (cast (P.cong₂ _×_ p₃ p₂) (a , b)))) | |
congfprod₁ a b refl refl refl f g fgrel = fgrel | |
⌊_⌋ˣ-sound : ∀ {Γ A} → (x : Var Ty Γ A) → (γ : ⟦ Γ ⟧ᴳ) → ⟦ x ⟧ˣ γ ≡ cast′ ⌊ A ⌋ᴬ-sound (S4.⟦ ⌊ x ⌋ˣ ⟧ˣ (cast ⌊ Γ ⌋ᴳ-sound γ)) | |
⌊_⌋ˣ-sound {Γ , A} top (γ , a) = congprod₂ γ a ⌊ Γ ⌋ᴳ-sound ⌊ A ⌋ᴬ-sound | |
⌊_⌋ˣ-sound {Γ , A} {B} (pop x) (γ , b) = | |
P.trans | |
(congprod₁ (⟦ x ⟧ˣ γ) b (⌊ B ⌋ᴬ-sound) (⌊ A ⌋ᴬ-sound)) | |
(congfprod₁ γ b ⌊ B ⌋ᴬ-sound ⌊ A ⌋ᴬ-sound ⌊ Γ ⌋ᴳ-sound (⟦ x ⟧ˣ) (S4.⟦ ⌊ x ⌋ˣ ⟧ˣ) (⌊_⌋ˣ-sound x γ)) | |
--⌊_⌋-sound : ∀ {Γ Δ A} → (t : Tm Γ Δ A) → (γ : ⟦ Γ ⟧ᴳ) → (δ : ⟦ Δ ⟧ᴳ) → (⟦ t ⟧ γ δ) ≡ S4.⟦ ⌊ t ⌋ ⟧ ? ? | |
--⌊_⌋-sound = ? |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment