|  | # Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint. | 
        
          |  | # *Only* converts the UNet, VAE, and Text Encoder. | 
        
          |  | # Does not convert optimizer state or any other thing. | 
        
          |  | # Written by jachiam | 
        
          |  |  | 
        
          |  | import argparse | 
        
          |  | import os.path as osp | 
        
          |  |  | 
        
          |  | import torch | 
        
          |  |  | 
        
          |  |  | 
        
          |  | # =================# | 
        
          |  | # UNet Conversion # | 
        
          |  | # =================# | 
        
          |  |  | 
        
          |  | unet_conversion_map = [ | 
        
          |  | # (stable-diffusion, HF Diffusers) | 
        
          |  | ("time_embed.0.weight", "time_embedding.linear_1.weight"), | 
        
          |  | ("time_embed.0.bias", "time_embedding.linear_1.bias"), | 
        
          |  | ("time_embed.2.weight", "time_embedding.linear_2.weight"), | 
        
          |  | ("time_embed.2.bias", "time_embedding.linear_2.bias"), | 
        
          |  | ("input_blocks.0.0.weight", "conv_in.weight"), | 
        
          |  | ("input_blocks.0.0.bias", "conv_in.bias"), | 
        
          |  | ("out.0.weight", "conv_norm_out.weight"), | 
        
          |  | ("out.0.bias", "conv_norm_out.bias"), | 
        
          |  | ("out.2.weight", "conv_out.weight"), | 
        
          |  | ("out.2.bias", "conv_out.bias"), | 
        
          |  | ] | 
        
          |  |  | 
        
          |  | unet_conversion_map_resnet = [ | 
        
          |  | # (stable-diffusion, HF Diffusers) | 
        
          |  | ("in_layers.0", "norm1"), | 
        
          |  | ("in_layers.2", "conv1"), | 
        
          |  | ("out_layers.0", "norm2"), | 
        
          |  | ("out_layers.3", "conv2"), | 
        
          |  | ("emb_layers.1", "time_emb_proj"), | 
        
          |  | ("skip_connection", "conv_shortcut"), | 
        
          |  | ] | 
        
          |  |  | 
        
          |  | unet_conversion_map_layer = [] | 
        
          |  | # hardcoded number of downblocks and resnets/attentions... | 
        
          |  | # would need smarter logic for other networks. | 
        
          |  | for i in range(4): | 
        
          |  | # loop over downblocks/upblocks | 
        
          |  |  | 
        
          |  | for j in range(2): | 
        
          |  | # loop over resnets/attentions for downblocks | 
        
          |  | hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." | 
        
          |  | sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." | 
        
          |  | unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) | 
        
          |  |  | 
        
          |  | if i < 3: | 
        
          |  | # no attention layers in down_blocks.3 | 
        
          |  | hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." | 
        
          |  | sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." | 
        
          |  | unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) | 
        
          |  |  | 
        
          |  | for j in range(3): | 
        
          |  | # loop over resnets/attentions for upblocks | 
        
          |  | hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." | 
        
          |  | sd_up_res_prefix = f"output_blocks.{3*i + j}.0." | 
        
          |  | unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) | 
        
          |  |  | 
        
          |  | if i > 0: | 
        
          |  | # no attention layers in up_blocks.0 | 
        
          |  | hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." | 
        
          |  | sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." | 
        
          |  | unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) | 
        
          |  |  | 
        
          |  | if i < 3: | 
        
          |  | # no downsample in down_blocks.3 | 
        
          |  | hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." | 
        
          |  | sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." | 
        
          |  | unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) | 
        
          |  |  | 
        
          |  | # no upsample in up_blocks.3 | 
        
          |  | hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." | 
        
          |  | sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." | 
        
          |  | unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) | 
        
          |  |  | 
        
          |  | hf_mid_atn_prefix = "mid_block.attentions.0." | 
        
          |  | sd_mid_atn_prefix = "middle_block.1." | 
        
          |  | unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) | 
        
          |  |  | 
        
          |  | for j in range(2): | 
        
          |  | hf_mid_res_prefix = f"mid_block.resnets.{j}." | 
        
          |  | sd_mid_res_prefix = f"middle_block.{2*j}." | 
        
          |  | unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) | 
        
          |  |  | 
        
          |  |  | 
        
          |  | def convert_unet_state_dict(unet_state_dict): | 
        
          |  | # buyer beware: this is a *brittle* function, | 
        
          |  | # and correct output requires that all of these pieces interact in | 
        
          |  | # the exact order in which I have arranged them. | 
        
          |  | mapping = {k: k for k in unet_state_dict.keys()} | 
        
          |  | for sd_name, hf_name in unet_conversion_map: | 
        
          |  | mapping[hf_name] = sd_name | 
        
          |  | for k, v in mapping.items(): | 
        
          |  | if "resnets" in k: | 
        
          |  | for sd_part, hf_part in unet_conversion_map_resnet: | 
        
          |  | v = v.replace(hf_part, sd_part) | 
        
          |  | mapping[k] = v | 
        
          |  | for k, v in mapping.items(): | 
        
          |  | for sd_part, hf_part in unet_conversion_map_layer: | 
        
          |  | v = v.replace(hf_part, sd_part) | 
        
          |  | mapping[k] = v | 
        
          |  | new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} | 
        
          |  | return new_state_dict | 
        
          |  |  | 
        
          |  |  | 
        
          |  | # ================# | 
        
          |  | # VAE Conversion # | 
        
          |  | # ================# | 
        
          |  |  | 
        
          |  | vae_conversion_map = [ | 
        
          |  | # (stable-diffusion, HF Diffusers) | 
        
          |  | ("nin_shortcut", "conv_shortcut"), | 
        
          |  | ("norm_out", "conv_norm_out"), | 
        
          |  | ("mid.attn_1.", "mid_block.attentions.0."), | 
        
          |  | ] | 
        
          |  |  | 
        
          |  | for i in range(4): | 
        
          |  | # down_blocks have two resnets | 
        
          |  | for j in range(2): | 
        
          |  | hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." | 
        
          |  | sd_down_prefix = f"encoder.down.{i}.block.{j}." | 
        
          |  | vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) | 
        
          |  |  | 
        
          |  | if i < 3: | 
        
          |  | hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." | 
        
          |  | sd_downsample_prefix = f"down.{i}.downsample." | 
        
          |  | vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) | 
        
          |  |  | 
        
          |  | hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." | 
        
          |  | sd_upsample_prefix = f"up.{3-i}.upsample." | 
        
          |  | vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) | 
        
          |  |  | 
        
          |  | # up_blocks have three resnets | 
        
          |  | # also, up blocks in hf are numbered in reverse from sd | 
        
          |  | for j in range(3): | 
        
          |  | hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." | 
        
          |  | sd_up_prefix = f"decoder.up.{3-i}.block.{j}." | 
        
          |  | vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) | 
        
          |  |  | 
        
          |  | # this part accounts for mid blocks in both the encoder and the decoder | 
        
          |  | for i in range(2): | 
        
          |  | hf_mid_res_prefix = f"mid_block.resnets.{i}." | 
        
          |  | sd_mid_res_prefix = f"mid.block_{i+1}." | 
        
          |  | vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) | 
        
          |  |  | 
        
          |  |  | 
        
          |  | vae_conversion_map_attn = [ | 
        
          |  | # (stable-diffusion, HF Diffusers) | 
        
          |  | ("norm.", "group_norm."), | 
        
          |  | ("q.", "query."), | 
        
          |  | ("k.", "key."), | 
        
          |  | ("v.", "value."), | 
        
          |  | ("proj_out.", "proj_attn."), | 
        
          |  | ] | 
        
          |  |  | 
        
          |  |  | 
        
          |  | def reshape_weight_for_sd(w): | 
        
          |  | # convert HF linear weights to SD conv2d weights | 
        
          |  | return w.reshape(*w.shape, 1, 1) | 
        
          |  |  | 
        
          |  |  | 
        
          |  | def convert_vae_state_dict(vae_state_dict): | 
        
          |  | mapping = {k: k for k in vae_state_dict.keys()} | 
        
          |  | for k, v in mapping.items(): | 
        
          |  | for sd_part, hf_part in vae_conversion_map: | 
        
          |  | v = v.replace(hf_part, sd_part) | 
        
          |  | mapping[k] = v | 
        
          |  | for k, v in mapping.items(): | 
        
          |  | if "attentions" in k: | 
        
          |  | for sd_part, hf_part in vae_conversion_map_attn: | 
        
          |  | v = v.replace(hf_part, sd_part) | 
        
          |  | mapping[k] = v | 
        
          |  | new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} | 
        
          |  | weights_to_convert = ["q", "k", "v", "proj_out"] | 
        
          |  | for k, v in new_state_dict.items(): | 
        
          |  | for weight_name in weights_to_convert: | 
        
          |  | if f"mid.attn_1.{weight_name}.weight" in k: | 
        
          |  | print(f"Reshaping {k} for SD format") | 
        
          |  | new_state_dict[k] = reshape_weight_for_sd(v) | 
        
          |  | return new_state_dict | 
        
          |  |  | 
        
          |  |  | 
        
          |  | # =========================# | 
        
          |  | # Text Encoder Conversion # | 
        
          |  | # =========================# | 
        
          |  | # pretty much a no-op | 
        
          |  |  | 
        
          |  |  | 
        
          |  | def convert_text_enc_state_dict(text_enc_dict): | 
        
          |  | return text_enc_dict | 
        
          |  |  | 
        
          |  |  | 
        
          |  | if __name__ == "__main__": | 
        
          |  | parser = argparse.ArgumentParser() | 
        
          |  |  | 
        
          |  | parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") | 
        
          |  | parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") | 
        
          |  | parser.add_argument("--half", action="store_true", help="Save weights in half precision.") | 
        
          |  |  | 
        
          |  | args = parser.parse_args() | 
        
          |  |  | 
        
          |  | assert args.model_path is not None, "Must provide a model path!" | 
        
          |  |  | 
        
          |  | assert args.checkpoint_path is not None, "Must provide a checkpoint path!" | 
        
          |  |  | 
        
          |  | unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") | 
        
          |  | vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") | 
        
          |  | text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") | 
        
          |  |  | 
        
          |  | # Convert the UNet model | 
        
          |  | unet_state_dict = torch.load(unet_path, map_location='cpu') | 
        
          |  | unet_state_dict = convert_unet_state_dict(unet_state_dict) | 
        
          |  | unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} | 
        
          |  |  | 
        
          |  | # Convert the VAE model | 
        
          |  | vae_state_dict = torch.load(vae_path, map_location='cpu') | 
        
          |  | vae_state_dict = convert_vae_state_dict(vae_state_dict) | 
        
          |  | vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} | 
        
          |  |  | 
        
          |  | # Convert the text encoder model | 
        
          |  | text_enc_dict = torch.load(text_enc_path, map_location='cpu') | 
        
          |  | text_enc_dict = convert_text_enc_state_dict(text_enc_dict) | 
        
          |  | text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} | 
        
          |  |  | 
        
          |  | # Put together new checkpoint | 
        
          |  | state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict} | 
        
          |  | if args.half: | 
        
          |  | state_dict = {k:v.half() for k,v in state_dict.items()} | 
        
          |  | state_dict = {"state_dict": state_dict} | 
        
          |  | torch.save(state_dict, args.checkpoint_path) | 
  
Where is this folder? I generated my .bin using a gui-based app and all i have is a folder with these subdirectories and the .bin