-
-
Save ClementPinard/54cb962b57951d1d5e10f5c23e1c9ff3 to your computer and use it in GitHub Desktop.
[pytorch] GridSampler CUDNN vs THCUNN performance comparision script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
def benchmark_shape(N, C, IH, IW, H, W, nrand, nrep): | |
""" | |
Performs nrand*nrep trials. | |
""" | |
input_datas = [torch.randn(C, N, IH, IW) for i in range(0, nrand)] | |
grid_datas = [torch.randn(H, N, W, 2) for i in range(0, nrand)] | |
datas = zip(input_datas, grid_datas) | |
# print "Running CPU benchmark" | |
# cpu_results = benchmark_helper(workload_cpu, datas, nrep); | |
print "Running CUDNN benchmark" | |
cudnn_results = benchmark_helper(workload_cudnn, datas, nrep); | |
assert(cudnn.enabled) | |
cudnn.enabled = False | |
print "Running THCUNN benchmark" | |
cuda_results = benchmark_helper(workload_cuda, datas, nrep); | |
cudnn.enabled = True | |
def check_shapes(N, C, IH, IW, H, W): | |
input_cpu = Variable(torch.randn(C, N, IH, IW).transpose(0, 1), \ | |
requires_grad=True) | |
grid_cpu = Variable(torch.randn(H, N, W, 2).transpose(0, 1), \ | |
requires_grad=True) | |
out_cpu = F.grid_sample(input_cpu, grid_cpu) | |
assert(out_cpu.size() == torch.Size([N, C, H, W])) | |
input_cuda = Variable(input_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | |
grid_cuda = Variable(grid_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | |
cudnn.enabled = False | |
out_cuda = F.grid_sample(input_cuda, grid_cuda) | |
cudnn.enabled = True | |
assertTensorsEqual(out_cpu, out_cuda) | |
input_cudnn = Variable(input_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | |
grid_cudnn = Variable(grid_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | |
out_cudnn = F.grid_sample(input_cudnn, grid_cudnn) | |
assertTensorsEqual(out_cpu, out_cudnn) | |
gradients = out_cpu.data.new(out_cpu.size()).normal_() | |
out_cpu.backward(gradients) | |
gradients_cuda = gradients.cuda() | |
cudnn.enabled = False | |
out_cuda.backward(gradients_cuda) | |
cudnn.enabled= True | |
out_cudnn.backward(gradients_cuda) | |
assertTensorsEqual(input_cpu.grad, input_cuda.grad, msg="A") | |
assertTensorsEqual(input_cpu.grad, input_cudnn.grad, msg="B") | |
assertTensorsEqual(input_cudnn.grad, input_cuda.grad, msg="C") | |
assertTensorsEqual(grid_cpu.grad, grid_cuda.grad, msg="D") | |
assertTensorsEqual(grid_cpu.grad, grid_cudnn.grad, msg="E") | |
assertTensorsEqual(grid_cuda.grad, grid_cudnn.grad, msg="F") | |
def benchmark_helper(workload_fn, datas, nrep): | |
start = time.time() | |
result = [] | |
for (input_data, grid_data) in datas: | |
for i in range(0, nrep): | |
out = (workload_fn(input_data, grid_data)) | |
result.append(out) | |
end = time.time() | |
print (end - start) | |
return result | |
def assertTensorsEqual(a, b, prec=1e-5, msg=''): | |
assert(a.size() == b.size()) | |
a = a.cuda() | |
b = b.cuda() | |
diff = a - b | |
if diff.is_signed(): | |
diff = diff.abs() | |
max_err = diff.max().data[0] | |
if (max_err > prec): | |
print msg | |
print "Error was " + str(max_err) | |
def workload_cpu(input_data, grid_data): | |
input = Variable(input_data.transpose(0, 1), requires_grad=True) | |
grid = Variable(grid_data.transpose(0, 1), requires_grad=True) | |
out = F.grid_sample(input, grid) | |
grads = out.data.new(out.size()).normal_() | |
out.backward(grads) | |
del input | |
del grid | |
del out | |
def workload_cudnn(input_data, grid_data): | |
assert(cudnn.enabled) | |
workload_cuda_helper(input_data, grid_data) | |
def workload_cuda(input_data, grid_data): | |
assert(not cudnn.enabled) | |
workload_cuda_helper(input_data, grid_data) | |
def workload_cuda_helper(input_data, grid_data): | |
input = Variable(input_data.transpose(0, 1).cuda(), requires_grad=True) | |
grid = Variable(grid_data.transpose(0, 1).cuda(), requires_grad=True) | |
out = F.grid_sample(input, grid) | |
grads = out.data.new(out.size()).normal_() | |
out.backward(grads) | |
del input | |
del grid | |
del out | |
if __name__ == "__main__": | |
# benchmark_shape(N, C, IH, IW, H, W, nrand, nrep) | |
print "Testing small sizes" | |
benchmark_shape(10, 5, 20, 20, 15, 15, 5, 5) | |
print "" | |
print "Testing small sizes, big N" | |
benchmark_shape(500, 5, 20, 20, 15, 15, 5, 5) | |
print "" | |
print "Testing large sizes" | |
benchmark_shape(50, 10, 100, 100, 100, 100, 5, 5) | |
print "" | |
print "Testing large sizes, small C" | |
benchmark_shape(50, 5, 100, 100, 100, 100, 5, 5) | |
print "" | |
print "Testing large N" | |
benchmark_shape(500, 10, 50, 50, 50, 50, 5, 5) | |
print "" | |
print "Testing large C" | |
benchmark_shape(50, 100, 50, 50, 50, 50, 5, 5) | |
print "" | |
print "Testing large input" | |
benchmark_shape(50, 10, 500, 500, 80, 80, 5, 5) | |
print "" | |
print "Testing large output" | |
benchmark_shape(50, 10, 80, 80, 500, 500, 5, 5) | |
print "" | |
# check_shapes(100, 8, 100, 100, 60, 60) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment