Created
July 16, 2023 15:39
BERTMap Wikidata <-> Polifonia error
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"gpuType": "T4" | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"a29dcfabbb884079bebc65ca721d4286": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_ad93707468d0443b8b2a29068ff6d348", | |
"IPY_MODEL_2b3c6737381742c1935b7f0c9d0c58d0", | |
"IPY_MODEL_7c41f46338c1409abd10e6e8741c80ae" | |
], | |
"layout": "IPY_MODEL_de2f3004fbdf4dc59cea10ca15801690" | |
} | |
}, | |
"ad93707468d0443b8b2a29068ff6d348": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_180de3b408a74992b2c7bc6a8882cbab", | |
"placeholder": "", | |
"style": "IPY_MODEL_8940f8264c5847839605374237c85484", | |
"value": "Downloading (…)lve/main/config.json: 100%" | |
} | |
}, | |
"2b3c6737381742c1935b7f0c9d0c58d0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_6d269f4f86344545b94f9bb1f8323a8b", | |
"max": 570, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_a6a284e8b0434285a2c852fe7a4cddae", | |
"value": 570 | |
} | |
}, | |
"7c41f46338c1409abd10e6e8741c80ae": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_f2511ce7ee4e4b238549c5817b141971", | |
"placeholder": "", | |
"style": "IPY_MODEL_0f60a68d43ae4e0592a4a79bfbcc1e34", | |
"value": " 570/570 [00:00<00:00, 28.8kB/s]" | |
} | |
}, | |
"de2f3004fbdf4dc59cea10ca15801690": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"180de3b408a74992b2c7bc6a8882cbab": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"8940f8264c5847839605374237c85484": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"6d269f4f86344545b94f9bb1f8323a8b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"a6a284e8b0434285a2c852fe7a4cddae": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"f2511ce7ee4e4b238549c5817b141971": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"0f60a68d43ae4e0592a4a79bfbcc1e34": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"9b909f5d386a43429f8f621604e364dd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_e29d8bf7b5b9420282833f3605807e17", | |
"IPY_MODEL_6724e4e64e9a4b8ea6ed31945ccbce16", | |
"IPY_MODEL_4cc95c84e5204f438cb465b4e3ebabbb" | |
], | |
"layout": "IPY_MODEL_99a8c002aa424c2491761c82d69b4606" | |
} | |
}, | |
"e29d8bf7b5b9420282833f3605807e17": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_d96495cbe6ac4a43a5b40aa625247710", | |
"placeholder": "", | |
"style": "IPY_MODEL_f596c7e167de46c5a9eac1c23685e27e", | |
"value": "Downloading model.safetensors: 100%" | |
} | |
}, | |
"6724e4e64e9a4b8ea6ed31945ccbce16": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_7197a59c5e1741abac4fa45b9b09c286", | |
"max": 440449768, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_665734b57c0e4fc0a0aa2a385c571719", | |
"value": 440449768 | |
} | |
}, | |
"4cc95c84e5204f438cb465b4e3ebabbb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e69863265e07488ba4844615fa40913a", | |
"placeholder": "", | |
"style": "IPY_MODEL_6ec1575e585d4574a9d5269d6d18cddf", | |
"value": " 440M/440M [00:02<00:00, 205MB/s]" | |
} | |
}, | |
"99a8c002aa424c2491761c82d69b4606": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d96495cbe6ac4a43a5b40aa625247710": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"f596c7e167de46c5a9eac1c23685e27e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"7197a59c5e1741abac4fa45b9b09c286": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"665734b57c0e4fc0a0aa2a385c571719": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"e69863265e07488ba4844615fa40913a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"6ec1575e585d4574a9d5269d6d18cddf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e6ae8828daa1436dacfb684e9e54351a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_77f13cc16db94cb3b86b17bda215f163", | |
"IPY_MODEL_45e44f58ea9c4be7b2999ec22f4126c7", | |
"IPY_MODEL_db6e0666b6bf475cb75cffc8902c6eb5" | |
], | |
"layout": "IPY_MODEL_ec322b6b100545adaa1c043581abdd28" | |
} | |
}, | |
"77f13cc16db94cb3b86b17bda215f163": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_10adebeb500549c39fb18eb69ff13666", | |
"placeholder": "", | |
"style": "IPY_MODEL_30a5adbfa30e4fd89ad8c4520f173513", | |
"value": "Downloading (…)okenizer_config.json: 100%" | |
} | |
}, | |
"45e44f58ea9c4be7b2999ec22f4126c7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_ffb7bd37186f4c9685bf1475153f96a2", | |
"max": 28, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_5c3943eb8cd642cb9b46f3f5babf7f98", | |
"value": 28 | |
} | |
}, | |
"db6e0666b6bf475cb75cffc8902c6eb5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_69d31656ecc54eb9a65a65960ce68b0b", | |
"placeholder": "", | |
"style": "IPY_MODEL_c8c3c64e45324c8683787fa61d323b22", | |
"value": " 28.0/28.0 [00:00<00:00, 1.02kB/s]" | |
} | |
}, | |
"ec322b6b100545adaa1c043581abdd28": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"10adebeb500549c39fb18eb69ff13666": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"30a5adbfa30e4fd89ad8c4520f173513": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"ffb7bd37186f4c9685bf1475153f96a2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"5c3943eb8cd642cb9b46f3f5babf7f98": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"69d31656ecc54eb9a65a65960ce68b0b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"c8c3c64e45324c8683787fa61d323b22": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"0bc03a786641441c8c1618de4429a790": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_7c86cb8e88e540d88ca2cf8a4014a48f", | |
"IPY_MODEL_2662955f108245ddbf038587949777ab", | |
"IPY_MODEL_87aa519f6b6548d58a6f93aee326f82a" | |
], | |
"layout": "IPY_MODEL_21cd77cf52d74ebcbed39810c2c8f5cb" | |
} | |
}, | |
"7c86cb8e88e540d88ca2cf8a4014a48f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_48d2927025c64fbbaab881598368b1e4", | |
"placeholder": "", | |
"style": "IPY_MODEL_ad4294a0c8eb4be783f64ef455050b43", | |
"value": "Downloading (…)solve/main/vocab.txt: 100%" | |
} | |
}, | |
"2662955f108245ddbf038587949777ab": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_9bf38875dc074681b9e64ad5ba245e87", | |
"max": 231508, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_3e4fbd6406b647ed927d21aae61ab8e4", | |
"value": 231508 | |
} | |
}, | |
"87aa519f6b6548d58a6f93aee326f82a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_0438de07f35c45e8a253ef91f9420bb5", | |
"placeholder": "", | |
"style": "IPY_MODEL_64d7186bae2e4963bd820f6c2c6ba1c7", | |
"value": " 232k/232k [00:00<00:00, 4.26MB/s]" | |
} | |
}, | |
"21cd77cf52d74ebcbed39810c2c8f5cb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"48d2927025c64fbbaab881598368b1e4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"ad4294a0c8eb4be783f64ef455050b43": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"9bf38875dc074681b9e64ad5ba245e87": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"3e4fbd6406b647ed927d21aae61ab8e4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"0438de07f35c45e8a253ef91f9420bb5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"64d7186bae2e4963bd820f6c2c6ba1c7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"63b46e70fe7745309221a9eaf62ae23e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_98f4b080721e4beda8a4cad23170422d", | |
"IPY_MODEL_03bdf7cedd874f78a6a2457dd4e31920", | |
"IPY_MODEL_2d5f7590dcdf47c4af6e12dff0c43848" | |
], | |
"layout": "IPY_MODEL_13ff05d1452e441ba7fa3417521e5b6e" | |
} | |
}, | |
"98f4b080721e4beda8a4cad23170422d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5bd9f796c34745239378edad591f898e", | |
"placeholder": "", | |
"style": "IPY_MODEL_de57ab7f05ec4239a93ca18c9b55fbd7", | |
"value": "Downloading (…)/main/tokenizer.json: 100%" | |
} | |
}, | |
"03bdf7cedd874f78a6a2457dd4e31920": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_d36726787a2d4581934a48ca3970d79d", | |
"max": 466062, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_cca0e64b85664113ace2be425ee08240", | |
"value": 466062 | |
} | |
}, | |
"2d5f7590dcdf47c4af6e12dff0c43848": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_cd434830b0c6476f8f1459ea4ce304b8", | |
"placeholder": "", | |
"style": "IPY_MODEL_d4330d558fd147278166b78b2ff4d776", | |
"value": " 466k/466k [00:00<00:00, 1.53MB/s]" | |
} | |
}, | |
"13ff05d1452e441ba7fa3417521e5b6e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"5bd9f796c34745239378edad591f898e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"de57ab7f05ec4239a93ca18c9b55fbd7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"d36726787a2d4581934a48ca3970d79d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"cca0e64b85664113ace2be425ee08240": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"cd434830b0c6476f8f1459ea4ce304b8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d4330d558fd147278166b78b2ff4d776": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"21418af9617d40afa23267a0ae5b81fe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_752dbf2931754d919db58b2d2d4f83ef", | |
"IPY_MODEL_d14f8e5dd7dc4a58b773097b95f7896d", | |
"IPY_MODEL_774230ac4753412a9d7103e4a58b2435" | |
], | |
"layout": "IPY_MODEL_a68966cd4eea419e9bfb553f4d566818" | |
} | |
}, | |
"752dbf2931754d919db58b2d2d4f83ef": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_b5b8f58ebbb74a4dafcc1109e757f55c", | |
"placeholder": "", | |
"style": "IPY_MODEL_5653bc295f544976a0b5e5e9b5c43bf8", | |
"value": "Generating train split: " | |
} | |
}, | |
"d14f8e5dd7dc4a58b773097b95f7896d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "info", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_dcb8bdbe7b8946789ff022d75a7e8367", | |
"max": 1, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_c104adb32c92442fb2fff9acd4b983e8", | |
"value": 1 | |
} | |
}, | |
"774230ac4753412a9d7103e4a58b2435": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_7da66e8266ab4747ba877ba06d4dd5f4", | |
"placeholder": "", | |
"style": "IPY_MODEL_e115eb6d774e4ff2b99b3d32d5fb4e98", | |
"value": " 77000/0 [00:00<00:00, 195029.41 examples/s]" | |
} | |
}, | |
"a68966cd4eea419e9bfb553f4d566818": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"b5b8f58ebbb74a4dafcc1109e757f55c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"5653bc295f544976a0b5e5e9b5c43bf8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"dcb8bdbe7b8946789ff022d75a7e8367": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": "20px" | |
} | |
}, | |
"c104adb32c92442fb2fff9acd4b983e8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"7da66e8266ab4747ba877ba06d4dd5f4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"e115eb6d774e4ff2b99b3d32d5fb4e98": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e6140b2e1ef349c4a756ae2674c5b6c9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_fd391f0488944ce9aea083d0f94119f4", | |
"IPY_MODEL_b1cdc5cf4d544736ae133bbb36eb8c6e", | |
"IPY_MODEL_ad1c5f8837aa4d4e94692ae2f9f101a8" | |
], | |
"layout": "IPY_MODEL_d6fc9d469fa742a8a8b5fb859a71c371" | |
} | |
}, | |
"fd391f0488944ce9aea083d0f94119f4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_4c0f9aae81724863b05fdbf76039dbcc", | |
"placeholder": "", | |
"style": "IPY_MODEL_751e24d59ed44d538ab1d1706f54aa34", | |
"value": "Load training data:: 99%" | |
} | |
}, | |
"b1cdc5cf4d544736ae133bbb36eb8c6e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_2d9b4f1e83ec4eeea3e785c411bc1999", | |
"max": 79121, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_84ea0b8f912d41f7b4e41b8a637664d2", | |
"value": 79121 | |
} | |
}, | |
"ad1c5f8837aa4d4e94692ae2f9f101a8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_3175637cbd2f43d79d29c097d7914220", | |
"placeholder": "", | |
"style": "IPY_MODEL_9dca6d06f18042c98efa6bd733b40f34", | |
"value": " 78000/79121 [00:05<00:00, 11638.74 examples/s]" | |
} | |
}, | |
"d6fc9d469fa742a8a8b5fb859a71c371": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"4c0f9aae81724863b05fdbf76039dbcc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"751e24d59ed44d538ab1d1706f54aa34": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"2d9b4f1e83ec4eeea3e785c411bc1999": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"84ea0b8f912d41f7b4e41b8a637664d2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"3175637cbd2f43d79d29c097d7914220": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"9dca6d06f18042c98efa6bd733b40f34": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e0f58fb57b5347c88a748abe27df0f79": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_cf5123787bf04f178a84279146cb38c0", | |
"IPY_MODEL_f3e87f0658334207a93a3c057b258339", | |
"IPY_MODEL_365d00af29d54195a93054d1fca53d36" | |
], | |
"layout": "IPY_MODEL_367d5a1e487249f0b164567da6581464" | |
} | |
}, | |
"cf5123787bf04f178a84279146cb38c0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_c9dad15028d74daa92f3b7f0efdd16be", | |
"placeholder": "", | |
"style": "IPY_MODEL_c88b3c2aad204a5a9358359d501f2eaa", | |
"value": "Generating train split: " | |
} | |
}, | |
"f3e87f0658334207a93a3c057b258339": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "info", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_075a603b3b354cec8825cb93feabb1ea", | |
"max": 1, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_9ab12b0d13b54a7494a33761884e4c2a", | |
"value": 1 | |
} | |
}, | |
"365d00af29d54195a93054d1fca53d36": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_515679d44eba4748838968f28528b368", | |
"placeholder": "", | |
"style": "IPY_MODEL_d0367dda678a428fbfc411cebd8f2bfe", | |
"value": " 8792/0 [00:00<00:00, 71379.97 examples/s]" | |
} | |
}, | |
"367d5a1e487249f0b164567da6581464": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"c9dad15028d74daa92f3b7f0efdd16be": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"c88b3c2aad204a5a9358359d501f2eaa": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"075a603b3b354cec8825cb93feabb1ea": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": "20px" | |
} | |
}, | |
"9ab12b0d13b54a7494a33761884e4c2a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"515679d44eba4748838968f28528b368": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d0367dda678a428fbfc411cebd8f2bfe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"59ea58dcc0044afe95f1e2a9b34f73ae": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_b5681c0cf9434135a053adff4967d7d5", | |
"IPY_MODEL_1b5a51751e924cfab0c066f89c5bb49d", | |
"IPY_MODEL_1918ef7e644f4fc5ab840eefea6d9943" | |
], | |
"layout": "IPY_MODEL_9c94103393e54102a2db1d5b158deeb3" | |
} | |
}, | |
"b5681c0cf9434135a053adff4967d7d5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_81b0942bf8ee4f4c99e22672b74d8174", | |
"placeholder": "", | |
"style": "IPY_MODEL_c160f248b20541d289b009649d4f4209", | |
"value": "Load validation data:: 100%" | |
} | |
}, | |
"1b5a51751e924cfab0c066f89c5bb49d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_c620153094ad41b8bfe76dbb45110e85", | |
"max": 8792, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_650b44de04fe47e6b1a8f7e44a3dc26d", | |
"value": 8792 | |
} | |
}, | |
"1918ef7e644f4fc5ab840eefea6d9943": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_d27c038bf4c3442a8198d8202bd75738", | |
"placeholder": "", | |
"style": "IPY_MODEL_44f5a7f896014af5823bdb2df1506648", | |
"value": " 8792/8792 [00:00<00:00, 20381.65 examples/s]" | |
} | |
}, | |
"9c94103393e54102a2db1d5b158deeb3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"81b0942bf8ee4f4c99e22672b74d8174": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"c160f248b20541d289b009649d4f4209": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"c620153094ad41b8bfe76dbb45110e85": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"650b44de04fe47e6b1a8f7e44a3dc26d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"d27c038bf4c3442a8198d8202bd75738": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"44f5a7f896014af5823bdb2df1506648": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
} | |
} | |
}, | |
"accelerator": "GPU" | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"[](https://colab.research.google.com/github/Danysan1/unibo-ke-matching-ontologies/blob/main/wikidata/bertmap_match.ipynb)\n", | |
"[](https://kaggle.com/kernels/welcome?src=https://github.com/Danysan1/unibo-ke-matching-ontologies/blob/main/wikidata/bertmap_match.ipynb)\n", | |
"[](https://studiolab.sagemaker.aws/import/github/Danysan1/unibo-ke-matching-ontologies/tree/main/wikidata/bertmap_match.ipynb)" | |
], | |
"metadata": { | |
"id": "0DalYOass6Xx" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# Polifonia - Wikidata alignment with BERTMap" | |
], | |
"metadata": { | |
"id": "hdxJwQbCspQ-" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!pip3 install torch torchvision torchaudio deeponto" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "qQOfMpEDgd5M", | |
"outputId": "1c679710-275c-499b-ae0c-ad5adb32e56b" | |
}, | |
"execution_count": 1, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.0.1+cu118)\n", | |
"Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (0.15.2+cu118)\n", | |
"Requirement already satisfied: torchaudio in /usr/local/lib/python3.10/dist-packages (2.0.2+cu118)\n", | |
"Collecting deeponto\n", | |
" Downloading deeponto-0.8.3-py3-none-any.whl (92.3 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.3/92.3 MB\u001b[0m \u001b[31m11.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.12.2)\n", | |
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch) (4.7.1)\n", | |
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.11.1)\n", | |
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.1)\n", | |
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.2)\n", | |
"Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.0.0)\n", | |
"Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch) (3.25.2)\n", | |
"Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch) (16.0.6)\n", | |
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision) (1.22.4)\n", | |
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from torchvision) (2.27.1)\n", | |
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision) (8.4.0)\n", | |
"Collecting JPype1==1.3.0 (from deeponto)\n", | |
" Downloading JPype1-1.3.0.tar.gz (820 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m820.3/820.3 kB\u001b[0m \u001b[31m66.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting yacs (from deeponto)\n", | |
" Downloading yacs-0.1.8-py3-none-any.whl (14 kB)\n", | |
"Collecting anytree==2.8.0 (from deeponto)\n", | |
" Downloading anytree-2.8.0-py2.py3-none-any.whl (41 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.7/41.7 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from deeponto) (8.1.4)\n", | |
"Collecting dill (from deeponto)\n", | |
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from deeponto) (1.5.3)\n", | |
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from deeponto) (1.2.2)\n", | |
"Collecting openprompt==1.0.0 (from deeponto)\n", | |
" Downloading openprompt-1.0.0-py3-none-any.whl (146 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m146.1/146.1 kB\u001b[0m \u001b[31m19.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting transformers[torch] (from deeponto)\n", | |
" Downloading transformers-4.30.2-py3-none-any.whl (7.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m98.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting datasets (from deeponto)\n", | |
" Downloading datasets-2.13.1-py3-none-any.whl (486 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m486.2/486.2 kB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: spacy in /usr/local/lib/python3.10/dist-packages (from deeponto) (3.5.4)\n", | |
"Collecting pprintpp (from deeponto)\n", | |
" Downloading pprintpp-0.4.0-py2.py3-none-any.whl (16 kB)\n", | |
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from deeponto) (4.9.3)\n", | |
"Collecting textdistance (from deeponto)\n", | |
" Downloading textdistance-4.5.0-py3-none-any.whl (31 kB)\n", | |
"Requirement already satisfied: ipywidgets==7.7.1 in /usr/local/lib/python3.10/dist-packages (from deeponto) (7.7.1)\n", | |
"Requirement already satisfied: ipykernel in /usr/local/lib/python3.10/dist-packages (from deeponto) (5.5.6)\n", | |
"Collecting enlighten (from deeponto)\n", | |
" Downloading enlighten-1.11.2-py2.py3-none-any.whl (53 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.7/53.7 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from anytree==2.8.0->deeponto) (1.16.0)\n", | |
"Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (0.2.0)\n", | |
"Requirement already satisfied: traitlets>=4.3.1 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (5.7.1)\n", | |
"Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (3.6.4)\n", | |
"Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (7.34.0)\n", | |
"Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (3.0.8)\n", | |
"Collecting sentencepiece==0.1.96 (from openprompt==1.0.0->deeponto)\n", | |
" Downloading sentencepiece-0.1.96-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m73.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: tqdm>=4.62.2 in /usr/local/lib/python3.10/dist-packages (from openprompt==1.0.0->deeponto) (4.65.0)\n", | |
"Collecting tensorboardX (from openprompt==1.0.0->deeponto)\n", | |
" Downloading tensorboardX-2.6.1-py2.py3-none-any.whl (101 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m101.6/101.6 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from openprompt==1.0.0->deeponto) (3.8.1)\n", | |
"Collecting rouge==1.0.0 (from openprompt==1.0.0->deeponto)\n", | |
" Downloading rouge-1.0.0-py3-none-any.whl (14 kB)\n", | |
"Requirement already satisfied: pyarrow in /usr/local/lib/python3.10/dist-packages (from openprompt==1.0.0->deeponto) (9.0.0)\n", | |
"Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from openprompt==1.0.0->deeponto) (1.10.1)\n", | |
"Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel->deeponto) (6.1.12)\n", | |
"Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel->deeponto) (6.3.1)\n", | |
"Collecting xxhash (from datasets->deeponto)\n", | |
" Downloading xxhash-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m25.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting multiprocess (from datasets->deeponto)\n", | |
" Downloading multiprocess-0.70.14-py310-none-any.whl (134 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.3/134.3 kB\u001b[0m \u001b[31m19.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets->deeponto) (2023.6.0)\n", | |
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets->deeponto) (3.8.4)\n", | |
"Collecting huggingface-hub<1.0.0,>=0.11.0 (from datasets->deeponto)\n", | |
" Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m33.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets->deeponto) (23.1)\n", | |
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets->deeponto) (6.0)\n", | |
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (1.26.16)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (2023.5.7)\n", | |
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (2.0.12)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (3.4)\n", | |
"Collecting blessed>=1.17.7 (from enlighten->deeponto)\n", | |
" Downloading blessed-1.20.0-py2.py3-none-any.whl (58 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.4/58.4 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting prefixed>=0.3.2 (from enlighten->deeponto)\n", | |
" Downloading prefixed-0.7.0-py2.py3-none-any.whl (13 kB)\n", | |
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.3)\n", | |
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->deeponto) (2.8.2)\n", | |
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->deeponto) (2022.7.1)\n", | |
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->deeponto) (1.3.1)\n", | |
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->deeponto) (3.1.0)\n", | |
"Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (3.0.12)\n", | |
"Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (1.0.4)\n", | |
"Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (1.0.9)\n", | |
"Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (2.0.7)\n", | |
"Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (3.0.8)\n", | |
"Requirement already satisfied: thinc<8.2.0,>=8.1.8 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (8.1.10)\n", | |
"Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (1.1.2)\n", | |
"Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (2.4.6)\n", | |
"Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (2.0.8)\n", | |
"Requirement already satisfied: typer<0.10.0,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (0.9.0)\n", | |
"Requirement already satisfied: pathy>=0.10.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (0.10.2)\n", | |
"Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (6.3.0)\n", | |
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (1.10.11)\n", | |
"Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (67.7.2)\n", | |
"Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (3.3.0)\n", | |
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n", | |
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]->deeponto) (2022.10.31)\n", | |
"Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers[torch]->deeponto)\n", | |
" Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m54.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting safetensors>=0.3.1 (from transformers[torch]->deeponto)\n", | |
" Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m64.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting accelerate>=0.20.2 (from transformers[torch]->deeponto)\n", | |
" Downloading accelerate-0.21.0-py3-none-any.whl (244 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m244.2/244.2 kB\u001b[0m \u001b[31m29.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.2->transformers[torch]->deeponto) (5.9.5)\n", | |
"Requirement already satisfied: wcwidth>=0.1.4 in /usr/local/lib/python3.10/dist-packages (from blessed>=1.17.7->enlighten->deeponto) (0.2.6)\n", | |
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (23.1.0)\n", | |
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (6.0.4)\n", | |
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (4.0.2)\n", | |
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (1.9.2)\n", | |
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (1.3.3)\n", | |
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (1.3.1)\n", | |
"Collecting jedi>=0.16 (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto)\n", | |
" Downloading jedi-0.18.2-py2.py3-none-any.whl (1.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m98.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (4.4.2)\n", | |
"Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.7.5)\n", | |
"Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (3.0.39)\n", | |
"Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (2.14.0)\n", | |
"Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.2.0)\n", | |
"Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.1.6)\n", | |
"Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (4.8.0)\n", | |
"Requirement already satisfied: blis<0.8.0,>=0.7.8 in /usr/local/lib/python3.10/dist-packages (from thinc<8.2.0,>=8.1.8->spacy->deeponto) (0.7.9)\n", | |
"Requirement already satisfied: confection<1.0.0,>=0.0.1 in /usr/local/lib/python3.10/dist-packages (from thinc<8.2.0,>=8.1.8->spacy->deeponto) (0.1.0)\n", | |
"Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (6.4.8)\n", | |
"Requirement already satisfied: jupyter-core>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-client->ipykernel->deeponto) (5.3.1)\n", | |
"Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.10/dist-packages (from jupyter-client->ipykernel->deeponto) (23.2.1)\n", | |
"Collecting protobuf>=4.22.3 (from tensorboardX->openprompt==1.0.0->deeponto)\n", | |
" Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m304.5/304.5 kB\u001b[0m \u001b[31m37.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.8.3)\n", | |
"Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.6.0->jupyter-client->ipykernel->deeponto) (3.8.1)\n", | |
"Requirement already satisfied: argon2-cffi in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (21.3.0)\n", | |
"Requirement already satisfied: nbformat in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (5.9.1)\n", | |
"Requirement already satisfied: nbconvert in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (6.5.4)\n", | |
"Requirement already satisfied: nest-asyncio>=1.5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.5.6)\n", | |
"Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.8.2)\n", | |
"Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.17.1)\n", | |
"Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.17.1)\n", | |
"Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.7.0)\n", | |
"Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (21.2.0)\n", | |
"Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (4.11.2)\n", | |
"Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (6.0.0)\n", | |
"Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.7.1)\n", | |
"Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.4)\n", | |
"Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.2.2)\n", | |
"Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.8.4)\n", | |
"Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.8.0)\n", | |
"Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.5.0)\n", | |
"Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.2.1)\n", | |
"Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (2.17.1)\n", | |
"Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (4.3.3)\n", | |
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.19.3)\n", | |
"Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.15.1)\n", | |
"Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (2.4.1)\n", | |
"Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.5.1)\n", | |
"Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (2.21)\n", | |
"Building wheels for collected packages: JPype1\n", | |
" Building wheel for JPype1 (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for JPype1: filename=JPype1-1.3.0-cp310-cp310-linux_x86_64.whl size=452719 sha256=2bacf30d7eb46048918e7c6363edcee2c36082f9c4edd932ca31ed6e91b86c68\n", | |
" Stored in directory: /root/.cache/pip/wheels/f5/c7/8f/c97c6c9868c256c8d17dabb772a2ca9002dcff2912fa8d7d58\n", | |
"Successfully built JPype1\n", | |
"Installing collected packages: tokenizers, sentencepiece, safetensors, prefixed, pprintpp, JPype1, yacs, xxhash, textdistance, rouge, protobuf, jedi, dill, blessed, anytree, tensorboardX, multiprocess, huggingface-hub, enlighten, transformers, datasets, openprompt, accelerate, deeponto\n", | |
" Attempting uninstall: protobuf\n", | |
" Found existing installation: protobuf 3.20.3\n", | |
" Uninstalling protobuf-3.20.3:\n", | |
" Successfully uninstalled protobuf-3.20.3\n", | |
"Successfully installed JPype1-1.3.0 accelerate-0.21.0 anytree-2.8.0 blessed-1.20.0 datasets-2.13.1 deeponto-0.8.3 dill-0.3.6 enlighten-1.11.2 huggingface-hub-0.16.4 jedi-0.18.2 multiprocess-0.70.14 openprompt-1.0.0 pprintpp-0.4.0 prefixed-0.7.0 protobuf-4.23.4 rouge-1.0.0 safetensors-0.3.1 sentencepiece-0.1.96 tensorboardX-2.6.1 textdistance-4.5.0 tokenizers-0.13.3 transformers-4.30.2 xxhash-3.2.0 yacs-0.1.8\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "DfcY0cL6gZvT", | |
"outputId": "fc794641-ad69-49c3-a783-34bd37cd3527" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Please enter the maximum memory located to JVM [8g]: \n", | |
"\n", | |
"8g maximum memory allocated to JVM.\n", | |
"JVM started successfully.\n" | |
] | |
} | |
], | |
"source": [ | |
"from deeponto.onto import Ontology\n", | |
"from deeponto.align.bertmap import BERTMapPipeline, DEFAULT_CONFIG_FILE" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"config_file = \"bertmap.yaml\"\n", | |
"#config_file = DEFAULT_CONFIG_FILE\n", | |
"src_onto_file = \"music-representation.owl\"\n", | |
"tgt_onto_file = \"musicClasses.owl\"\n" | |
], | |
"metadata": { | |
"id": "9t-qx1QBgebN" | |
}, | |
"execution_count": 8, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"config = BERTMapPipeline.load_bertmap_config(config_file)\n", | |
"#BERTMapPipeline.save_bertmap_config(config, \"bertmap.yaml\")" | |
], | |
"metadata": { | |
"id": "XZ4NorrMo7XN" | |
}, | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"src_onto = Ontology(src_onto_file)" | |
], | |
"metadata": { | |
"id": "9p4c3DmuhHI9" | |
}, | |
"execution_count": 9, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"tgt_onto = Ontology(tgt_onto_file)" | |
], | |
"metadata": { | |
"id": "m2uAE1HUkULV" | |
}, | |
"execution_count": 11, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"bertmap = BERTMapPipeline(src_onto, tgt_onto, config)" | |
], | |
"metadata": { | |
"id": "--jY5HGakY1t", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 1000, | |
"referenced_widgets": [ | |
"a29dcfabbb884079bebc65ca721d4286", | |
"ad93707468d0443b8b2a29068ff6d348", | |
"2b3c6737381742c1935b7f0c9d0c58d0", | |
"7c41f46338c1409abd10e6e8741c80ae", | |
"de2f3004fbdf4dc59cea10ca15801690", | |
"180de3b408a74992b2c7bc6a8882cbab", | |
"8940f8264c5847839605374237c85484", | |
"6d269f4f86344545b94f9bb1f8323a8b", | |
"a6a284e8b0434285a2c852fe7a4cddae", | |
"f2511ce7ee4e4b238549c5817b141971", | |
"0f60a68d43ae4e0592a4a79bfbcc1e34", | |
"9b909f5d386a43429f8f621604e364dd", | |
"e29d8bf7b5b9420282833f3605807e17", | |
"6724e4e64e9a4b8ea6ed31945ccbce16", | |
"4cc95c84e5204f438cb465b4e3ebabbb", | |
"99a8c002aa424c2491761c82d69b4606", | |
"d96495cbe6ac4a43a5b40aa625247710", | |
"f596c7e167de46c5a9eac1c23685e27e", | |
"7197a59c5e1741abac4fa45b9b09c286", | |
"665734b57c0e4fc0a0aa2a385c571719", | |
"e69863265e07488ba4844615fa40913a", | |
"6ec1575e585d4574a9d5269d6d18cddf", | |
"e6ae8828daa1436dacfb684e9e54351a", | |
"77f13cc16db94cb3b86b17bda215f163", | |
"45e44f58ea9c4be7b2999ec22f4126c7", | |
"db6e0666b6bf475cb75cffc8902c6eb5", | |
"ec322b6b100545adaa1c043581abdd28", | |
"10adebeb500549c39fb18eb69ff13666", | |
"30a5adbfa30e4fd89ad8c4520f173513", | |
"ffb7bd37186f4c9685bf1475153f96a2", | |
"5c3943eb8cd642cb9b46f3f5babf7f98", | |
"69d31656ecc54eb9a65a65960ce68b0b", | |
"c8c3c64e45324c8683787fa61d323b22", | |
"0bc03a786641441c8c1618de4429a790", | |
"7c86cb8e88e540d88ca2cf8a4014a48f", | |
"2662955f108245ddbf038587949777ab", | |
"87aa519f6b6548d58a6f93aee326f82a", | |
"21cd77cf52d74ebcbed39810c2c8f5cb", | |
"48d2927025c64fbbaab881598368b1e4", | |
"ad4294a0c8eb4be783f64ef455050b43", | |
"9bf38875dc074681b9e64ad5ba245e87", | |
"3e4fbd6406b647ed927d21aae61ab8e4", | |
"0438de07f35c45e8a253ef91f9420bb5", | |
"64d7186bae2e4963bd820f6c2c6ba1c7", | |
"63b46e70fe7745309221a9eaf62ae23e", | |
"98f4b080721e4beda8a4cad23170422d", | |
"03bdf7cedd874f78a6a2457dd4e31920", | |
"2d5f7590dcdf47c4af6e12dff0c43848", | |
"13ff05d1452e441ba7fa3417521e5b6e", | |
"5bd9f796c34745239378edad591f898e", | |
"de57ab7f05ec4239a93ca18c9b55fbd7", | |
"d36726787a2d4581934a48ca3970d79d", | |
"cca0e64b85664113ace2be425ee08240", | |
"cd434830b0c6476f8f1459ea4ce304b8", | |
"d4330d558fd147278166b78b2ff4d776", | |
"21418af9617d40afa23267a0ae5b81fe", | |
"752dbf2931754d919db58b2d2d4f83ef", | |
"d14f8e5dd7dc4a58b773097b95f7896d", | |
"774230ac4753412a9d7103e4a58b2435", | |
"a68966cd4eea419e9bfb553f4d566818", | |
"b5b8f58ebbb74a4dafcc1109e757f55c", | |
"5653bc295f544976a0b5e5e9b5c43bf8", | |
"dcb8bdbe7b8946789ff022d75a7e8367", | |
"c104adb32c92442fb2fff9acd4b983e8", | |
"7da66e8266ab4747ba877ba06d4dd5f4", | |
"e115eb6d774e4ff2b99b3d32d5fb4e98", | |
"e6140b2e1ef349c4a756ae2674c5b6c9", | |
"fd391f0488944ce9aea083d0f94119f4", | |
"b1cdc5cf4d544736ae133bbb36eb8c6e", | |
"ad1c5f8837aa4d4e94692ae2f9f101a8", | |
"d6fc9d469fa742a8a8b5fb859a71c371", | |
"4c0f9aae81724863b05fdbf76039dbcc", | |
"751e24d59ed44d538ab1d1706f54aa34", | |
"2d9b4f1e83ec4eeea3e785c411bc1999", | |
"84ea0b8f912d41f7b4e41b8a637664d2", | |
"3175637cbd2f43d79d29c097d7914220", | |
"9dca6d06f18042c98efa6bd733b40f34", | |
"e0f58fb57b5347c88a748abe27df0f79", | |
"cf5123787bf04f178a84279146cb38c0", | |
"f3e87f0658334207a93a3c057b258339", | |
"365d00af29d54195a93054d1fca53d36", | |
"367d5a1e487249f0b164567da6581464", | |
"c9dad15028d74daa92f3b7f0efdd16be", | |
"c88b3c2aad204a5a9358359d501f2eaa", | |
"075a603b3b354cec8825cb93feabb1ea", | |
"9ab12b0d13b54a7494a33761884e4c2a", | |
"515679d44eba4748838968f28528b368", | |
"d0367dda678a428fbfc411cebd8f2bfe", | |
"59ea58dcc0044afe95f1e2a9b34f73ae", | |
"b5681c0cf9434135a053adff4967d7d5", | |
"1b5a51751e924cfab0c066f89c5bb49d", | |
"1918ef7e644f4fc5ab840eefea6d9943", | |
"9c94103393e54102a2db1d5b158deeb3", | |
"81b0942bf8ee4f4c99e22672b74d8174", | |
"c160f248b20541d289b009649d4f4209", | |
"c620153094ad41b8bfe76dbb45110e85", | |
"650b44de04fe47e6b1a8f7e44a3dc26d", | |
"d27c038bf4c3442a8198d8202bd75738", | |
"44f5a7f896014af5823bdb2df1506648" | |
] | |
}, | |
"outputId": "860d7563-8562-4caa-976e-12546daa3a6e" | |
}, | |
"execution_count": 12, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"[Time: 00:00:00] - [PID: 194] - [Model: bertmap] \n", | |
"Load the following configurations:\n", | |
"{\n", | |
" \"model\": \"bertmap\",\n", | |
" \"output_path\": \"/content\",\n", | |
" \"annotation_property_iris\": [\n", | |
" \"http://www.w3.org/2000/01/rdf-schema#label\",\n", | |
" \"http://www.geneontology.org/formats/oboInOwl#hasSynonym\",\n", | |
" \"http://www.geneontology.org/formats/oboInOwl#hasExactSynonym\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#exactMatch\",\n", | |
" \"http://www.ebi.ac.uk/efo/alternative_term\",\n", | |
" \"http://www.orpha.net/ORDO/Orphanet_#symbol\",\n", | |
" \"http://purl.org/sig/ont/fma/synonym\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#prefLabel\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#altLabel\",\n", | |
" \"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P108\",\n", | |
" \"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P90\"\n", | |
" ],\n", | |
" \"known_mappings\": null,\n", | |
" \"auxiliary_ontos\": [],\n", | |
" \"bert\": {\n", | |
" \"pretrained_path\": \"bert-base-uncased\",\n", | |
" \"max_length_for_input\": 256,\n", | |
" \"num_epochs_for_training\": 3.0,\n", | |
" \"batch_size_for_training\": 16,\n", | |
" \"batch_size_for_prediction\": 128,\n", | |
" \"resume_training\": null\n", | |
" },\n", | |
" \"global_matching\": {\n", | |
" \"enabled\": true,\n", | |
" \"num_raw_candidates\": 200,\n", | |
" \"num_best_predictions\": 10,\n", | |
" \"mapping_extension_threshold\": 0.8,\n", | |
" \"mapping_filtered_threshold\": 0.9\n", | |
" }\n", | |
"}\n", | |
"INFO:bertmap:Load the following configurations:\n", | |
"{\n", | |
" \"model\": \"bertmap\",\n", | |
" \"output_path\": \"/content\",\n", | |
" \"annotation_property_iris\": [\n", | |
" \"http://www.w3.org/2000/01/rdf-schema#label\",\n", | |
" \"http://www.geneontology.org/formats/oboInOwl#hasSynonym\",\n", | |
" \"http://www.geneontology.org/formats/oboInOwl#hasExactSynonym\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#exactMatch\",\n", | |
" \"http://www.ebi.ac.uk/efo/alternative_term\",\n", | |
" \"http://www.orpha.net/ORDO/Orphanet_#symbol\",\n", | |
" \"http://purl.org/sig/ont/fma/synonym\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#prefLabel\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#altLabel\",\n", | |
" \"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P108\",\n", | |
" \"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P90\"\n", | |
" ],\n", | |
" \"known_mappings\": null,\n", | |
" \"auxiliary_ontos\": [],\n", | |
" \"bert\": {\n", | |
" \"pretrained_path\": \"bert-base-uncased\",\n", | |
" \"max_length_for_input\": 256,\n", | |
" \"num_epochs_for_training\": 3.0,\n", | |
" \"batch_size_for_training\": 16,\n", | |
" \"batch_size_for_prediction\": 128,\n", | |
" \"resume_training\": null\n", | |
" },\n", | |
" \"global_matching\": {\n", | |
" \"enabled\": true,\n", | |
" \"num_raw_candidates\": 200,\n", | |
" \"num_best_predictions\": 10,\n", | |
" \"mapping_extension_threshold\": 0.8,\n", | |
" \"mapping_filtered_threshold\": 0.9\n", | |
" }\n", | |
"}\n", | |
"[Time: 00:00:00] - [PID: 194] - [Model: bertmap] \n", | |
"Save the configuration file at /content/bertmap/config.yaml.\n", | |
"INFO:bertmap:Save the configuration file at /content/bertmap/config.yaml.\n", | |
"[Time: 00:00:00] - [PID: 194] - [Model: bertmap] \n", | |
"Construct new text semantics corpora and save at /content/bertmap/data/text-semantics.corpora.json.\n", | |
"INFO:bertmap:Construct new text semantics corpora and save at /content/bertmap/data/text-semantics.corpora.json.\n", | |
"[Time: 00:00:02] - [PID: 194] - [Model: bertmap] \n", | |
"{\n", | |
" \"TextSemanticsCorpora\": {\n", | |
" \"num_synonyms\": 17587,\n", | |
" \"num_nonsynonyms\": 70326,\n", | |
" \"intra_src_onto_corpus\": {\n", | |
" \"num_synonyms\": 11,\n", | |
" \"num_nonsynonyms\": 43,\n", | |
" \"num_soft_nonsynonyms\": 43,\n", | |
" \"num_hard_nonsynonyms\": 0,\n", | |
" \"annotation_thesaurus\": {\n", | |
" \"ontology\": {\n", | |
" \"loaded_from\": \"music-representation.owl\",\n", | |
" \"num_classes\": 29,\n", | |
" \"num_object_properties\": 44,\n", | |
" \"num_data_properties\": 2,\n", | |
" \"num_annotation_properties\": 7\n", | |
" },\n", | |
" \"average_number_of_annotations_per_class\": 0.379,\n", | |
" \"number_of_synonym_groups\": 29\n", | |
" }\n", | |
" },\n", | |
" \"intra_tgt_onto_corpus\": {\n", | |
" \"num_synonyms\": 17576,\n", | |
" \"num_nonsynonyms\": 70304,\n", | |
" \"num_soft_nonsynonyms\": 35225,\n", | |
" \"num_hard_nonsynonyms\": 35079,\n", | |
" \"annotation_thesaurus\": {\n", | |
" \"ontology\": {\n", | |
" \"loaded_from\": \"musicClasses.owl\",\n", | |
" \"num_classes\": 10942,\n", | |
" \"num_object_properties\": 0,\n", | |
" \"num_data_properties\": 0,\n", | |
" \"num_annotation_properties\": 4\n", | |
" },\n", | |
" \"average_number_of_annotations_per_class\": 1.144,\n", | |
" \"number_of_synonym_groups\": 10942\n", | |
" }\n", | |
" },\n", | |
" \"cross_onto_corpus\": null,\n", | |
" \"auxiliary_onto_corpora\": []\n", | |
" }\n", | |
"}\n", | |
"INFO:bertmap:{\n", | |
" \"TextSemanticsCorpora\": {\n", | |
" \"num_synonyms\": 17587,\n", | |
" \"num_nonsynonyms\": 70326,\n", | |
" \"intra_src_onto_corpus\": {\n", | |
" \"num_synonyms\": 11,\n", | |
" \"num_nonsynonyms\": 43,\n", | |
" \"num_soft_nonsynonyms\": 43,\n", | |
" \"num_hard_nonsynonyms\": 0,\n", | |
" \"annotation_thesaurus\": {\n", | |
" \"ontology\": {\n", | |
" \"loaded_from\": \"music-representation.owl\",\n", | |
" \"num_classes\": 29,\n", | |
" \"num_object_properties\": 44,\n", | |
" \"num_data_properties\": 2,\n", | |
" \"num_annotation_properties\": 7\n", | |
" },\n", | |
" \"average_number_of_annotations_per_class\": 0.379,\n", | |
" \"number_of_synonym_groups\": 29\n", | |
" }\n", | |
" },\n", | |
" \"intra_tgt_onto_corpus\": {\n", | |
" \"num_synonyms\": 17576,\n", | |
" \"num_nonsynonyms\": 70304,\n", | |
" \"num_soft_nonsynonyms\": 35225,\n", | |
" \"num_hard_nonsynonyms\": 35079,\n", | |
" \"annotation_thesaurus\": {\n", | |
" \"ontology\": {\n", | |
" \"loaded_from\": \"musicClasses.owl\",\n", | |
" \"num_classes\": 10942,\n", | |
" \"num_object_properties\": 0,\n", | |
" \"num_data_properties\": 0,\n", | |
" \"num_annotation_properties\": 4\n", | |
" },\n", | |
" \"average_number_of_annotations_per_class\": 1.144,\n", | |
" \"number_of_synonym_groups\": 10942\n", | |
" }\n", | |
" },\n", | |
" \"cross_onto_corpus\": null,\n", | |
" \"auxiliary_onto_corpora\": []\n", | |
" }\n", | |
"}\n", | |
"[Time: 00:00:02] - [PID: 194] - [Model: bertmap] \n", | |
"Construct new fine-tuning data and save at /content/bertmap/data/fine-tune.data.json.\n", | |
"INFO:bertmap:Construct new fine-tuning data and save at /content/bertmap/data/fine-tune.data.json.\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Loading a BERT model from: bert-base-uncased.\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)lve/main/config.json: 0%| | 0.00/570 [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "a29dcfabbb884079bebc65ca721d4286" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading model.safetensors: 0%| | 0.00/440M [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "9b909f5d386a43429f8f621604e364dd" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight']\n", | |
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", | |
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", | |
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", | |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)okenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "e6ae8828daa1436dacfb684e9e54351a" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)solve/main/vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "0bc03a786641441c8c1618de4429a790" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)/main/tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "63b46e70fe7745309221a9eaf62ae23e" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Downloading and preparing dataset generator/default to /root/.cache/huggingface/datasets/generator/default-dd661ad551fb9b15/0.0.0...\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Generating train split: 0 examples [00:00, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "21418af9617d40afa23267a0ae5b81fe" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Dataset generator downloaded and prepared to /root/.cache/huggingface/datasets/generator/default-dd661ad551fb9b15/0.0.0. Subsequent calls will reuse this data.\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Load training data:: 0%| | 0/79121 [00:00<?, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "e6140b2e1ef349c4a756ae2674c5b6c9" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Downloading and preparing dataset generator/default to /root/.cache/huggingface/datasets/generator/default-3e8c36597523434f/0.0.0...\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Generating train split: 0 examples [00:00, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "e0f58fb57b5347c88a748abe27df0f79" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Dataset generator downloaded and prepared to /root/.cache/huggingface/datasets/generator/default-3e8c36597523434f/0.0.0. Subsequent calls will reuse this data.\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Load validation data:: 0%| | 0/8792 [00:00<?, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "59ea58dcc0044afe95f1e2a9b34f73ae" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"[Time: 00:00:38] - [PID: 194] - [Model: bertmap] \n", | |
"Data statistics:\n", | |
" {\n", | |
" \"num_training\": 79121,\n", | |
" \"num_validation\": 8792\n", | |
"}\n", | |
"INFO:bertmap:Data statistics:\n", | |
" {\n", | |
" \"num_training\": 79121,\n", | |
" \"num_validation\": 8792\n", | |
"}\n", | |
"/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", | |
" warnings.warn(\n", | |
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
" <div>\n", | |
" \n", | |
" <progress value='14838' max='14838' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
" [14838/14838 30:32, Epoch 3/3]\n", | |
" </div>\n", | |
" <table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: left;\">\n", | |
" <th>Step</th>\n", | |
" <th>Training Loss</th>\n", | |
" <th>Validation Loss</th>\n", | |
" <th>Accuracy</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>980</td>\n", | |
" <td>0.125800</td>\n", | |
" <td>0.109794</td>\n", | |
" <td>0.973499</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1960</td>\n", | |
" <td>0.120100</td>\n", | |
" <td>0.109092</td>\n", | |
" <td>0.974295</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2940</td>\n", | |
" <td>0.113100</td>\n", | |
" <td>0.131368</td>\n", | |
" <td>0.974067</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3920</td>\n", | |
" <td>0.112100</td>\n", | |
" <td>0.097271</td>\n", | |
" <td>0.978617</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4900</td>\n", | |
" <td>0.117000</td>\n", | |
" <td>0.094326</td>\n", | |
" <td>0.976342</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>5880</td>\n", | |
" <td>0.060200</td>\n", | |
" <td>0.090819</td>\n", | |
" <td>0.977934</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>6860</td>\n", | |
" <td>0.057100</td>\n", | |
" <td>0.114139</td>\n", | |
" <td>0.979186</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>7840</td>\n", | |
" <td>0.070900</td>\n", | |
" <td>0.097529</td>\n", | |
" <td>0.979641</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>8820</td>\n", | |
" <td>0.076200</td>\n", | |
" <td>0.082380</td>\n", | |
" <td>0.982370</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>9800</td>\n", | |
" <td>0.059000</td>\n", | |
" <td>0.071074</td>\n", | |
" <td>0.983849</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>10780</td>\n", | |
" <td>0.035400</td>\n", | |
" <td>0.086666</td>\n", | |
" <td>0.982598</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>11760</td>\n", | |
" <td>0.034000</td>\n", | |
" <td>0.083171</td>\n", | |
" <td>0.983963</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>12740</td>\n", | |
" <td>0.039100</td>\n", | |
" <td>0.081670</td>\n", | |
" <td>0.984190</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>13720</td>\n", | |
" <td>0.035600</td>\n", | |
" <td>0.073470</td>\n", | |
" <td>0.984986</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>14700</td>\n", | |
" <td>0.031200</td>\n", | |
" <td>0.075684</td>\n", | |
" <td>0.985328</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table><p>" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"[Time: 00:31:15] - [PID: 194] - [Model: bertmap] \n", | |
"Fine-tuning finished, found best checkpoint at /content/bertmap/bert/checkpoint-9800.\n", | |
"INFO:bertmap:Fine-tuning finished, found best checkpoint at /content/bertmap/bert/checkpoint-9800.\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"The BERT model is set to eval mode for making predictions.\n", | |
"There are 1 GPU(s) available.\n", | |
"We will use the GPU: Tesla T4\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"<style>\n", | |
".enlighten-bold {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
".enlighten-underline {\n", | |
" text-decoration: underline;\n", | |
"}\n", | |
".enlighten-fg-bright-white {\n", | |
" color: #ffffff;\n", | |
"}\n", | |
".enlighten-bg-lightslategray {\n", | |
" background-color: #778899;\n", | |
"}\n", | |
"</style>\n", | |
"<div class=\"enlighten\">\n", | |
" <div class=\"enlighten-bar\">\n", | |
" <pre><span class=\"enlighten-bold enlighten-underline enlighten-fg-bright-white enlighten-bg-lightslategray\">Global Matching Stage: Mapping Extension 00:03</span></pre>\n", | |
" </div>\n", | |
" <div class=\"enlighten-bar\">\n", | |
" <pre>Mapping Prediction 100%|████████████████████████████████| 29/29 [00:02<00:00, 12.02 per src class/s]</pre>\n", | |
" </div>\n", | |
" <div class=\"enlighten-bar\">\n", | |
" <pre>Mapping Extension [Iteration #0] 0 mapping [00:00, 0.00 mapping/s] </pre>\n", | |
" </div>\n", | |
" <div class=\"enlighten-bar\">\n", | |
" <pre></pre>\n", | |
" </div>\n", | |
"</div>\n" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"[Time: 00:31:15] - [PID: 194] - [Model: bertmap] \n", | |
"Build inverted annotation index for candidate selection.\n", | |
"INFO:bertmap:Build inverted annotation index for candidate selection.\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"Start global matching for each class in the source ontology.\n", | |
"INFO:bertmap:Start global matching for each class in the source ontology.\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://cedric.cnam.fr/isid/ontologies/MusicNote.owl#Part are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://cedric.cnam.fr/isid/ontologies/MusicNote.owl#Part are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"Save currently computed mappings to prevent undesirable loss.\n", | |
"INFO:bertmap:Save currently computed mappings to prevent undesirable loss.\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://cedric.cnam.fr/isid/ontologies/MusicNote.owl#Score are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://cedric.cnam.fr/isid/ontologies/MusicNote.owl#Score are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://cedric.cnam.fr/isid/ontologies/MusicNote.owl#Voice are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://cedric.cnam.fr/isid/ontologies/MusicNote.owl#Voice are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://linkeddata.uni-muenster.de/ontology/musicscore#Instant are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://linkeddata.uni-muenster.de/ontology/musicscore#Instant are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://purl.org/andreapoltronieri/music-annotation-pattern/MusicTimeInterval are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://purl.org/andreapoltronieri/music-annotation-pattern/MusicTimeInterval are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://w3id.org/polifonia/ontology/jams/AnnotationType are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://w3id.org/polifonia/ontology/jams/AnnotationType are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://w3id.org/polifonia/ontology/jams/AnnotatorType are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://w3id.org/polifonia/ontology/jams/AnnotatorType are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://w3id.org/polifonia/ontology/jams/JAMSAnnotation are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://w3id.org/polifonia/ontology/jams/JAMSAnnotation are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for http://w3id.org/polifonia/ontology/jams/JAMSObservation are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://w3id.org/polifonia/ontology/jams/JAMSObservation are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://purl.org/andreapoltronieri/notepattern/Position are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://purl.org/andreapoltronieri/notepattern/Position are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Agent are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Agent are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Explanation are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Explanation are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeInterval are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeInterval are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Role are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Role are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Theory are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Theory are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-meta/AbstractScore are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-meta/AbstractScore are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-meta/Recording are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-meta/Recording are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-meta/Score are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-meta/Score are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Analysis are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Analysis are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Analyst are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Analyst are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/AnalyticalReference are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/AnalyticalReference are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Annotation are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/music-representation/Annotation <EquivalentTo> http://www.wikidata.org/entity/Q4289658, 0.925591)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Annotation are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/music-representation/Annotation <EquivalentTo> http://www.wikidata.org/entity/Q4289658, 0.925591)]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/AnnotationType are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/AnnotationType are\n", | |
"[]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Annotator are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/music-representation/Annotator <EquivalentTo> http://www.wikidata.org/entity/Q1790046, 0.937481), EntityMapping(https://w3id.org/polifonia/ontology/music-representation/Annotator <EquivalentTo> http://www.wikidata.org/entity/Q1141589, 0.931599)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Annotator are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/music-representation/Annotator <EquivalentTo> http://www.wikidata.org/entity/Q1790046, 0.937481), EntityMapping(https://w3id.org/polifonia/ontology/music-representation/Annotator <EquivalentTo> http://www.wikidata.org/entity/Q1141589, 0.931599)]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/AnnotatorType are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/music-representation/AnnotatorType <EquivalentTo> http://www.wikidata.org/entity/Q105303913, 0.964318)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/AnnotatorType are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/music-representation/AnnotatorType <EquivalentTo> http://www.wikidata.org/entity/Q105303913, 0.964318)]\n", | |
"[Time: 00:31:16] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Fragment are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Fragment are\n", | |
"[]\n", | |
"[Time: 00:31:17] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/MusicContent are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/MusicContent are\n", | |
"[]\n", | |
"[Time: 00:31:18] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/MusicProjection are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/MusicProjection are\n", | |
"[]\n", | |
"[Time: 00:31:18] - [PID: 194] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Observation are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/music-representation/Observation are\n", | |
"[]\n", | |
"[Time: 00:31:18] - [PID: 194] - [Model: bertmap] \n", | |
"Save currently computed mappings to prevent undesirable loss.\n", | |
"INFO:bertmap:Save currently computed mappings to prevent undesirable loss.\n", | |
"[Time: 00:31:18] - [PID: 194] - [Model: bertmap] \n", | |
"Finished mapping prediction for each class in the source ontology.\n", | |
"INFO:bertmap:Finished mapping prediction for each class in the source ontology.\n", | |
"[Time: 00:31:18] - [PID: 194] - [Model: bertmap] \n", | |
"Start mapping extension for each class pair with score >= 0.8.\n", | |
"INFO:bertmap:Start mapping extension for each class pair with score >= 0.8.\n" | |
] | |
}, | |
{ | |
"output_type": "error", | |
"ename": "IndexError", | |
"evalue": "ignored", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-12-a888744a31b2>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mbertmap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBERTMapPipeline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_onto\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_onto\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/pipeline.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src_onto, tgt_onto, config)\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[0menlighten_status\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menlighten_status\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 192\u001b[0m )\n\u001b[0;32m--> 193\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_refiner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_extension\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# mapping extension\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 194\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_refiner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_repair\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# mapping repair\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 195\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menlighten_status\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdemo\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Finished\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/mapping_refinement.py\u001b[0m in \u001b[0;36mmapping_extension\u001b[0;34m(self, max_iter)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msrc_class_iri\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_class_iri\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mfrontier\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[0;31m# one hop extension makes sure new mappings are really \"new\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 165\u001b[0;31m \u001b[0mcur_new_mappings\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mone_hop_extend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_class_iri\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_class_iri\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 166\u001b[0m \u001b[0mextension_progress_bar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcur_new_mappings\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 167\u001b[0m \u001b[0mnew_mappings\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mcur_new_mappings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/mapping_refinement.py\u001b[0m in \u001b[0;36mone_hop_extend\u001b[0;34m(self, src_class_iri, tgt_class_iri, pool_size)\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[0msrc_candidate_annotations\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_predictor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc_annotation_index\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0msrc_candidate_iri\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0mtgt_candidate_annotations\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_predictor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtgt_annotation_index\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtgt_candidate_iri\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m \u001b[0mscore\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_predictor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbert_mapping_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_candidate_annotations\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_candidate_annotations\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 254\u001b[0m \u001b[0;31m# add to already scored collection\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_score_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_candidate_iri\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_candidate_iri\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscore\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/mapping_prediction.py\u001b[0m in \u001b[0;36mbert_mapping_score\u001b[0;34m(self, src_class_annotations, tgt_class_annotations)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[0;31m# apply BERT classifier and define mapping score := Average(SynonymScores)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0mclass_annotation_pairs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitertools\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproduct\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_class_annotations\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_class_annotations\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 109\u001b[0;31m \u001b[0msynonym_scores\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbert_synonym_classifier\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclass_annotation_pairs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 110\u001b[0m \u001b[0;31m# only one element tensor is able to be extracted as a scalar by .item()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfloat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msynonym_scores\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/bert_classifier.py\u001b[0m in \u001b[0;36mpredict\u001b[0;34m(self, sent_pairs)\u001b[0m\n\u001b[1;32m 155\u001b[0m \u001b[0mReturn\u001b[0m \u001b[0mthe\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0msoftmax\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mprobailities\u001b[0m \u001b[0mof\u001b[0m \u001b[0mpredicting\u001b[0m \u001b[0mpairs\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msynonyms\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 156\u001b[0m \"\"\"\n\u001b[0;32m--> 157\u001b[0;31m \u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprocess_inputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msent_pairs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 158\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mno_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 159\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msoftmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlogits\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/bert_classifier.py\u001b[0m in \u001b[0;36mprocess_inputs\u001b[0;34m(self, sent_pairs)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mThis\u001b[0m \u001b[0mfunction\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mcalled\u001b[0m \u001b[0monly\u001b[0m \u001b[0mwhen\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mBERT\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mabout\u001b[0m \u001b[0mto\u001b[0m \u001b[0mmake\u001b[0m \u001b[0mpredictions\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0meval\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \"\"\"\n\u001b[0;32m--> 185\u001b[0;31m return self.tokenizer._tokenizer(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0msent_pairs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0mreturn_tensors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"pt\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, text, text_pair, text_target, text_pair_target, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)\u001b[0m\n\u001b[1;32m 2559\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_in_target_context_manager\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2560\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_switch_to_input_mode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2561\u001b[0;31m \u001b[0mencodings\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_one\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtext_pair\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtext_pair\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mall_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2562\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtext_target\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2563\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_switch_to_target_mode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py\u001b[0m in \u001b[0;36m_call_one\u001b[0;34m(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)\u001b[0m\n\u001b[1;32m 2645\u001b[0m )\n\u001b[1;32m 2646\u001b[0m \u001b[0mbatch_text_or_text_pairs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtext_pair\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtext_pair\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mtext\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2647\u001b[0;31m return self.batch_encode_plus(\n\u001b[0m\u001b[1;32m 2648\u001b[0m \u001b[0mbatch_text_or_text_pairs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbatch_text_or_text_pairs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2649\u001b[0m \u001b[0madd_special_tokens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0madd_special_tokens\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py\u001b[0m in \u001b[0;36mbatch_encode_plus\u001b[0;34m(self, batch_text_or_text_pairs, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)\u001b[0m\n\u001b[1;32m 2836\u001b[0m )\n\u001b[1;32m 2837\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2838\u001b[0;31m return self._batch_encode_plus(\n\u001b[0m\u001b[1;32m 2839\u001b[0m \u001b[0mbatch_text_or_text_pairs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbatch_text_or_text_pairs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2840\u001b[0m \u001b[0madd_special_tokens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0madd_special_tokens\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_fast.py\u001b[0m in \u001b[0;36m_batch_encode_plus\u001b[0;34m(self, batch_text_or_text_pairs, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0;31m# we add an overflow_to_sample_mapping array (see below)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0msanitized_tokens\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtokens_and_encodings\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0mstack\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0me\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtokens_and_encodings\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mitem\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0msanitized_tokens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstack\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mIndexError\u001b[0m: list index out of range" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!zip -r /content/bertmap-output.zip /content/bertmap/match" | |
], | |
"metadata": { | |
"id": "NnZ6PZPte4SI" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!rm -rf /content/bertmap" | |
], | |
"metadata": { | |
"id": "NKyshVXEiVKk" | |
}, | |
"execution_count": 10, | |
"outputs": [] | |
} | |
] | |
} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment