Created
July 16, 2023 15:39
-
-
Save Danysan1/3c00c66b3cbdf8f73864873315fab0ab to your computer and use it in GitHub Desktop.
BERTMap Wikidata <-> Polifonia error
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"gpuType": "T4" | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"ec890c434cf64e25ab626afe0cb6e854": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_a8e27cf5a5d4446f8464af18d16f4801", | |
"IPY_MODEL_0a082473ab794959aee42433e8135a75", | |
"IPY_MODEL_4993060db7ee42b2bb166136ed9354a0" | |
], | |
"layout": "IPY_MODEL_7868cf1717b647fa8b97ec27188deecb" | |
} | |
}, | |
"a8e27cf5a5d4446f8464af18d16f4801": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_94413b0dd065445088ed86ae7ada40bd", | |
"placeholder": "", | |
"style": "IPY_MODEL_a75ab70c70ca48a5bb73f444c66a9e2f", | |
"value": "Downloading (…)lve/main/config.json: 100%" | |
} | |
}, | |
"0a082473ab794959aee42433e8135a75": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_c4e6c052dbaf461c91426ba4580cae8c", | |
"max": 570, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_354e15e9d967472b9c0d9a07911445c7", | |
"value": 570 | |
} | |
}, | |
"4993060db7ee42b2bb166136ed9354a0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5e2521a9f89046fdaf024e28a28b795a", | |
"placeholder": "", | |
"style": "IPY_MODEL_a8d7519ef5264410842a4ea74b78cabb", | |
"value": " 570/570 [00:00<00:00, 13.1kB/s]" | |
} | |
}, | |
"7868cf1717b647fa8b97ec27188deecb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"94413b0dd065445088ed86ae7ada40bd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"a75ab70c70ca48a5bb73f444c66a9e2f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"c4e6c052dbaf461c91426ba4580cae8c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"354e15e9d967472b9c0d9a07911445c7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"5e2521a9f89046fdaf024e28a28b795a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"a8d7519ef5264410842a4ea74b78cabb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"a7ac42d9936f41309a8aff5425d94b2b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_cd0905a7e62a4123a9c7416e6277b443", | |
"IPY_MODEL_34da7ba75f454e92a7a20ca0c673a46e", | |
"IPY_MODEL_29f9bf434a8240dba6d703acefb21e43" | |
], | |
"layout": "IPY_MODEL_4644c51c742d49a6ae6d5221cd7f3e2b" | |
} | |
}, | |
"cd0905a7e62a4123a9c7416e6277b443": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_20dce35a57ab4a028d64c8d5f3a581fb", | |
"placeholder": "", | |
"style": "IPY_MODEL_0b900b15a0a043578c1faff2837893de", | |
"value": "Downloading model.safetensors: 100%" | |
} | |
}, | |
"34da7ba75f454e92a7a20ca0c673a46e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_df60143cc2e04700a764f3e2464989bd", | |
"max": 440449768, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_2a19131e775e4c348702207bd75b7173", | |
"value": 440449768 | |
} | |
}, | |
"29f9bf434a8240dba6d703acefb21e43": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_6303c802724d4de095cfb6eb0c1f211a", | |
"placeholder": "", | |
"style": "IPY_MODEL_f6ec3633f446455088f5aeeec135b3cc", | |
"value": " 440M/440M [00:02<00:00, 209MB/s]" | |
} | |
}, | |
"4644c51c742d49a6ae6d5221cd7f3e2b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"20dce35a57ab4a028d64c8d5f3a581fb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"0b900b15a0a043578c1faff2837893de": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"df60143cc2e04700a764f3e2464989bd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"2a19131e775e4c348702207bd75b7173": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"6303c802724d4de095cfb6eb0c1f211a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"f6ec3633f446455088f5aeeec135b3cc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"4534cdc091c34b4984afdd0785d1b704": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_c87d67caaf9f44f4aa5c1fbd463a95f6", | |
"IPY_MODEL_29e32ac284154391877765bb0b2f3c08", | |
"IPY_MODEL_ac39cb7dd17a457d9b5b699347517ce3" | |
], | |
"layout": "IPY_MODEL_7eaec7ae234f459e8a8cd47ced826534" | |
} | |
}, | |
"c87d67caaf9f44f4aa5c1fbd463a95f6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_f16248e331224f3ab1a52b9c12fc48b0", | |
"placeholder": "", | |
"style": "IPY_MODEL_17d6bb23bcba4c7fb94034976ebdaa71", | |
"value": "Downloading (…)okenizer_config.json: 100%" | |
} | |
}, | |
"29e32ac284154391877765bb0b2f3c08": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5af9add483864c65865532c719c55546", | |
"max": 28, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_8468ae0946ba4ca3a9da129a3bd30539", | |
"value": 28 | |
} | |
}, | |
"ac39cb7dd17a457d9b5b699347517ce3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_4e8804e98d5d4c1b820a76a645f41fa2", | |
"placeholder": "", | |
"style": "IPY_MODEL_63dcc28f046b4bfbabad06c4685bc5ed", | |
"value": " 28.0/28.0 [00:00<00:00, 1.33kB/s]" | |
} | |
}, | |
"7eaec7ae234f459e8a8cd47ced826534": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"f16248e331224f3ab1a52b9c12fc48b0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"17d6bb23bcba4c7fb94034976ebdaa71": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"5af9add483864c65865532c719c55546": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"8468ae0946ba4ca3a9da129a3bd30539": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"4e8804e98d5d4c1b820a76a645f41fa2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"63dcc28f046b4bfbabad06c4685bc5ed": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"ab77b4b66e3c4420b68d9a152e2f5f94": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_71d0036d63f8428cb641db89a91f5863", | |
"IPY_MODEL_f9c3beaa5011495b93f34dd81ff85105", | |
"IPY_MODEL_e9db58906bd246aa99e997b345df41f9" | |
], | |
"layout": "IPY_MODEL_b2c811e83ad04c239a6b0f02779a6c04" | |
} | |
}, | |
"71d0036d63f8428cb641db89a91f5863": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_f953b291f13d48ed8eeb378de481fd97", | |
"placeholder": "", | |
"style": "IPY_MODEL_36eb4c09fb8442d984998256b1685674", | |
"value": "Downloading (…)solve/main/vocab.txt: 100%" | |
} | |
}, | |
"f9c3beaa5011495b93f34dd81ff85105": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_b69aafa696c54305814383f1b9480a77", | |
"max": 231508, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_ecb897d08cbe4cf1a27a0166767728e8", | |
"value": 231508 | |
} | |
}, | |
"e9db58906bd246aa99e997b345df41f9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_6afdef24a38e4ad0924e859ee457e070", | |
"placeholder": "", | |
"style": "IPY_MODEL_ef5ba9dcbda44e7da93382610e475ac6", | |
"value": " 232k/232k [00:00<00:00, 1.39MB/s]" | |
} | |
}, | |
"b2c811e83ad04c239a6b0f02779a6c04": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"f953b291f13d48ed8eeb378de481fd97": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"36eb4c09fb8442d984998256b1685674": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"b69aafa696c54305814383f1b9480a77": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"ecb897d08cbe4cf1a27a0166767728e8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"6afdef24a38e4ad0924e859ee457e070": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"ef5ba9dcbda44e7da93382610e475ac6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"5d3e0763f7d94308b49dc09b2b4122b0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_be015cf809b845b68be2840ccc957fac", | |
"IPY_MODEL_e623090bc151417aa5b657af72962c7d", | |
"IPY_MODEL_b3741cd4e4d242c198891571222f29bb" | |
], | |
"layout": "IPY_MODEL_511ff36170634426ae8c214cc19fc05e" | |
} | |
}, | |
"be015cf809b845b68be2840ccc957fac": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_d3768106138e4de483ffabf997521a13", | |
"placeholder": "", | |
"style": "IPY_MODEL_474f4f9f315642bca605b208ef9329f3", | |
"value": "Downloading (…)/main/tokenizer.json: 100%" | |
} | |
}, | |
"e623090bc151417aa5b657af72962c7d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_911e2973859541cd8031018c09a8c87d", | |
"max": 466062, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_57bbc5c6bd814994ba79b49f28542545", | |
"value": 466062 | |
} | |
}, | |
"b3741cd4e4d242c198891571222f29bb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_29bf7797df74429f9936e930c8cf713b", | |
"placeholder": "", | |
"style": "IPY_MODEL_1b6376141c7b406fbaa7548f3db913d5", | |
"value": " 466k/466k [00:00<00:00, 1.93MB/s]" | |
} | |
}, | |
"511ff36170634426ae8c214cc19fc05e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d3768106138e4de483ffabf997521a13": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"474f4f9f315642bca605b208ef9329f3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"911e2973859541cd8031018c09a8c87d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"57bbc5c6bd814994ba79b49f28542545": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"29bf7797df74429f9936e930c8cf713b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"1b6376141c7b406fbaa7548f3db913d5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"45363d9cfedb47e1b71f5a85b7bf4bbd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_5721177581654d92ba4fc99d39b0531a", | |
"IPY_MODEL_ae76a15634a14567852d98242069fa4d", | |
"IPY_MODEL_34ffa6a4d3ce48b2a0dbf0f372bc89a4" | |
], | |
"layout": "IPY_MODEL_b1107b31ffb64710a5d86bb4251641e4" | |
} | |
}, | |
"5721177581654d92ba4fc99d39b0531a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_1b37382dcee144489835eb1d6cd62d8b", | |
"placeholder": "", | |
"style": "IPY_MODEL_31f3ff2a62c84793b994c0a876c961d5", | |
"value": "Generating train split: " | |
} | |
}, | |
"ae76a15634a14567852d98242069fa4d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "info", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e8b0ecf68cde439c82d8015de54ce9d2", | |
"max": 1, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_3f308be8a77c46c08d380c6086cb2528", | |
"value": 1 | |
} | |
}, | |
"34ffa6a4d3ce48b2a0dbf0f372bc89a4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_2b9c738ec6ac40edaf6693723dffb9ea", | |
"placeholder": "", | |
"style": "IPY_MODEL_95c24677986c4f1bb33fa42ac634ca13", | |
"value": " 30000/0 [00:00<00:00, 144435.57 examples/s]" | |
} | |
}, | |
"b1107b31ffb64710a5d86bb4251641e4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"1b37382dcee144489835eb1d6cd62d8b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"31f3ff2a62c84793b994c0a876c961d5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e8b0ecf68cde439c82d8015de54ce9d2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": "20px" | |
} | |
}, | |
"3f308be8a77c46c08d380c6086cb2528": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"2b9c738ec6ac40edaf6693723dffb9ea": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"95c24677986c4f1bb33fa42ac634ca13": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"1e52515097dc42d59b345b7b9ae6212f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_c02d63124eb24141be21058b90c12ee9", | |
"IPY_MODEL_22c358cfda944d39b0125b8ec64b7728", | |
"IPY_MODEL_dde1e53215eb423cb32acec8f797cde6" | |
], | |
"layout": "IPY_MODEL_0ed1f747ea0146cb91eeae9929117869" | |
} | |
}, | |
"c02d63124eb24141be21058b90c12ee9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_a2a12e476ad644e29ec0f5e0da45eb15", | |
"placeholder": "", | |
"style": "IPY_MODEL_a13e75901a314685afe482083a907ceb", | |
"value": "Load training data:: 98%" | |
} | |
}, | |
"22c358cfda944d39b0125b8ec64b7728": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_95eda72defec451bb0fba2e243dd6078", | |
"max": 47751, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_cbce32435289428488bd5089b16bb69b", | |
"value": 47751 | |
} | |
}, | |
"dde1e53215eb423cb32acec8f797cde6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_29af4401b3c24b1f8475c7fc2567a44b", | |
"placeholder": "", | |
"style": "IPY_MODEL_1e5dce056cff4c8f9a03f86c723c7dfe", | |
"value": " 47000/47751 [00:03<00:00, 7047.62 examples/s]" | |
} | |
}, | |
"0ed1f747ea0146cb91eeae9929117869": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"a2a12e476ad644e29ec0f5e0da45eb15": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"a13e75901a314685afe482083a907ceb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"95eda72defec451bb0fba2e243dd6078": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"cbce32435289428488bd5089b16bb69b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"29af4401b3c24b1f8475c7fc2567a44b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"1e5dce056cff4c8f9a03f86c723c7dfe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"330c983ed40a4fc7bc3152f0c15a30a8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_c5fce70894134da1acf6783067492680", | |
"IPY_MODEL_b35812ce037045a691adef223a2f72bb", | |
"IPY_MODEL_b32f5786555949ddbc1382d0f3c437aa" | |
], | |
"layout": "IPY_MODEL_de73894988fd4b35b848cb533d7baac1" | |
} | |
}, | |
"c5fce70894134da1acf6783067492680": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_4d11f22feab645879e72e3b25dfa9316", | |
"placeholder": "", | |
"style": "IPY_MODEL_494e66e5be5a40038fa4bd6e33555da1", | |
"value": "Generating train split: " | |
} | |
}, | |
"b35812ce037045a691adef223a2f72bb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "info", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_03211a2111ac46c1a4eaef479308163e", | |
"max": 1, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_926c2b2924354497928caa99e312c958", | |
"value": 1 | |
} | |
}, | |
"b32f5786555949ddbc1382d0f3c437aa": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_7e49605b75a14e79a843aaf5edb1efcc", | |
"placeholder": "", | |
"style": "IPY_MODEL_1bb7557c49534cf7994a2ccbb472853d", | |
"value": " 5306/0 [00:00<00:00, 52984.00 examples/s]" | |
} | |
}, | |
"de73894988fd4b35b848cb533d7baac1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"4d11f22feab645879e72e3b25dfa9316": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"494e66e5be5a40038fa4bd6e33555da1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"03211a2111ac46c1a4eaef479308163e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": "20px" | |
} | |
}, | |
"926c2b2924354497928caa99e312c958": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"7e49605b75a14e79a843aaf5edb1efcc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"1bb7557c49534cf7994a2ccbb472853d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"9beeec8bec6d4c27b990f5deb6fdbbec": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_808bbf3cadac440d816e6fe88b1402a1", | |
"IPY_MODEL_6971a89c5dd24c03b5b3f207c289a193", | |
"IPY_MODEL_d48dbbd433644e9eb75e11eeb6654072" | |
], | |
"layout": "IPY_MODEL_dd04be6c2b1b491da93db1e00b2dd292" | |
} | |
}, | |
"808bbf3cadac440d816e6fe88b1402a1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_899cf4a72f684d6c9ca8e19aeccad236", | |
"placeholder": "", | |
"style": "IPY_MODEL_d8d8ce97cd96483d8a527d723837efd6", | |
"value": "Load validation data:: 94%" | |
} | |
}, | |
"6971a89c5dd24c03b5b3f207c289a193": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e633737230934b0a8fdeedce48cb37d0", | |
"max": 5306, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_90c1badb1344448e87254cd12f6daea4", | |
"value": 5306 | |
} | |
}, | |
"d48dbbd433644e9eb75e11eeb6654072": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_3724f5d886c341869f3f0e41e5358ec0", | |
"placeholder": "", | |
"style": "IPY_MODEL_f9492b914a6a47d9857a3b97fb1c0790", | |
"value": " 5000/5306 [00:00<00:00, 17047.79 examples/s]" | |
} | |
}, | |
"dd04be6c2b1b491da93db1e00b2dd292": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"899cf4a72f684d6c9ca8e19aeccad236": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d8d8ce97cd96483d8a527d723837efd6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e633737230934b0a8fdeedce48cb37d0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"90c1badb1344448e87254cd12f6daea4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"3724f5d886c341869f3f0e41e5358ec0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"f9492b914a6a47d9857a3b97fb1c0790": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
} | |
} | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"[](https://colab.research.google.com/github/Danysan1/unibo-ke-matching-ontologies/blob/main/wikidata/bertmap_match.ipynb)\n", | |
"[](https://kaggle.com/kernels/welcome?src=https://github.com/Danysan1/unibo-ke-matching-ontologies/blob/main/wikidata/bertmap_match.ipynb)\n", | |
"[](https://studiolab.sagemaker.aws/import/github/Danysan1/unibo-ke-matching-ontologies/tree/main/wikidata/bertmap_match.ipynb)" | |
], | |
"metadata": { | |
"id": "0DalYOass6Xx" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# Polifonia - Wikidata alignment with BERTMap" | |
], | |
"metadata": { | |
"id": "hdxJwQbCspQ-" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!pip3 install torch torchvision torchaudio deeponto" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "qQOfMpEDgd5M", | |
"outputId": "416d2107-84ec-451f-a791-41ea33c115f7" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.0.1+cu118)\n", | |
"Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (0.15.2+cu118)\n", | |
"Requirement already satisfied: torchaudio in /usr/local/lib/python3.10/dist-packages (2.0.2+cu118)\n", | |
"Collecting deeponto\n", | |
" Downloading deeponto-0.8.3-py3-none-any.whl (92.3 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.3/92.3 MB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.12.2)\n", | |
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch) (4.7.1)\n", | |
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.11.1)\n", | |
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.1)\n", | |
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.2)\n", | |
"Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.0.0)\n", | |
"Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch) (3.25.2)\n", | |
"Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch) (16.0.6)\n", | |
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision) (1.22.4)\n", | |
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from torchvision) (2.27.1)\n", | |
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision) (8.4.0)\n", | |
"Collecting JPype1==1.3.0 (from deeponto)\n", | |
" Downloading JPype1-1.3.0.tar.gz (820 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m820.3/820.3 kB\u001b[0m \u001b[31m52.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting yacs (from deeponto)\n", | |
" Downloading yacs-0.1.8-py3-none-any.whl (14 kB)\n", | |
"Collecting anytree==2.8.0 (from deeponto)\n", | |
" Downloading anytree-2.8.0-py2.py3-none-any.whl (41 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.7/41.7 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from deeponto) (8.1.4)\n", | |
"Collecting dill (from deeponto)\n", | |
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m14.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from deeponto) (1.5.3)\n", | |
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from deeponto) (1.2.2)\n", | |
"Collecting openprompt==1.0.0 (from deeponto)\n", | |
" Downloading openprompt-1.0.0-py3-none-any.whl (146 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m146.1/146.1 kB\u001b[0m \u001b[31m15.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting transformers[torch] (from deeponto)\n", | |
" Downloading transformers-4.30.2-py3-none-any.whl (7.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m110.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting datasets (from deeponto)\n", | |
" Downloading datasets-2.13.1-py3-none-any.whl (486 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m486.2/486.2 kB\u001b[0m \u001b[31m43.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: spacy in /usr/local/lib/python3.10/dist-packages (from deeponto) (3.5.4)\n", | |
"Collecting pprintpp (from deeponto)\n", | |
" Downloading pprintpp-0.4.0-py2.py3-none-any.whl (16 kB)\n", | |
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from deeponto) (4.9.3)\n", | |
"Collecting textdistance (from deeponto)\n", | |
" Downloading textdistance-4.5.0-py3-none-any.whl (31 kB)\n", | |
"Requirement already satisfied: ipywidgets==7.7.1 in /usr/local/lib/python3.10/dist-packages (from deeponto) (7.7.1)\n", | |
"Requirement already satisfied: ipykernel in /usr/local/lib/python3.10/dist-packages (from deeponto) (5.5.6)\n", | |
"Collecting enlighten (from deeponto)\n", | |
" Downloading enlighten-1.11.2-py2.py3-none-any.whl (53 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.7/53.7 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from anytree==2.8.0->deeponto) (1.16.0)\n", | |
"Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (0.2.0)\n", | |
"Requirement already satisfied: traitlets>=4.3.1 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (5.7.1)\n", | |
"Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (3.6.4)\n", | |
"Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (7.34.0)\n", | |
"Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets==7.7.1->deeponto) (3.0.8)\n", | |
"Collecting sentencepiece==0.1.96 (from openprompt==1.0.0->deeponto)\n", | |
" Downloading sentencepiece-0.1.96-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m58.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: tqdm>=4.62.2 in /usr/local/lib/python3.10/dist-packages (from openprompt==1.0.0->deeponto) (4.65.0)\n", | |
"Collecting tensorboardX (from openprompt==1.0.0->deeponto)\n", | |
" Downloading tensorboardX-2.6.1-py2.py3-none-any.whl (101 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m101.6/101.6 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from openprompt==1.0.0->deeponto) (3.8.1)\n", | |
"Collecting rouge==1.0.0 (from openprompt==1.0.0->deeponto)\n", | |
" Downloading rouge-1.0.0-py3-none-any.whl (14 kB)\n", | |
"Requirement already satisfied: pyarrow in /usr/local/lib/python3.10/dist-packages (from openprompt==1.0.0->deeponto) (9.0.0)\n", | |
"Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from openprompt==1.0.0->deeponto) (1.10.1)\n", | |
"Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel->deeponto) (6.1.12)\n", | |
"Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel->deeponto) (6.3.1)\n", | |
"Collecting xxhash (from datasets->deeponto)\n", | |
" Downloading xxhash-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m24.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting multiprocess (from datasets->deeponto)\n", | |
" Downloading multiprocess-0.70.14-py310-none-any.whl (134 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.3/134.3 kB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets->deeponto) (2023.6.0)\n", | |
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets->deeponto) (3.8.4)\n", | |
"Collecting huggingface-hub<1.0.0,>=0.11.0 (from datasets->deeponto)\n", | |
" Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets->deeponto) (23.1)\n", | |
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets->deeponto) (6.0)\n", | |
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (1.26.16)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (2023.5.7)\n", | |
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (2.0.12)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (3.4)\n", | |
"Collecting blessed>=1.17.7 (from enlighten->deeponto)\n", | |
" Downloading blessed-1.20.0-py2.py3-none-any.whl (58 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.4/58.4 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting prefixed>=0.3.2 (from enlighten->deeponto)\n", | |
" Downloading prefixed-0.7.0-py2.py3-none-any.whl (13 kB)\n", | |
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.3)\n", | |
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->deeponto) (2.8.2)\n", | |
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->deeponto) (2022.7.1)\n", | |
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->deeponto) (1.3.1)\n", | |
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->deeponto) (3.1.0)\n", | |
"Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (3.0.12)\n", | |
"Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (1.0.4)\n", | |
"Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (1.0.9)\n", | |
"Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (2.0.7)\n", | |
"Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (3.0.8)\n", | |
"Requirement already satisfied: thinc<8.2.0,>=8.1.8 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (8.1.10)\n", | |
"Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (1.1.2)\n", | |
"Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (2.4.6)\n", | |
"Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (2.0.8)\n", | |
"Requirement already satisfied: typer<0.10.0,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (0.9.0)\n", | |
"Requirement already satisfied: pathy>=0.10.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (0.10.2)\n", | |
"Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (6.3.0)\n", | |
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (1.10.11)\n", | |
"Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (67.7.2)\n", | |
"Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /usr/local/lib/python3.10/dist-packages (from spacy->deeponto) (3.3.0)\n", | |
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n", | |
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]->deeponto) (2022.10.31)\n", | |
"Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers[torch]->deeponto)\n", | |
" Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m68.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting safetensors>=0.3.1 (from transformers[torch]->deeponto)\n", | |
" Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m69.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting accelerate>=0.20.2 (from transformers[torch]->deeponto)\n", | |
" Downloading accelerate-0.21.0-py3-none-any.whl (244 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m244.2/244.2 kB\u001b[0m \u001b[31m29.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.2->transformers[torch]->deeponto) (5.9.5)\n", | |
"Requirement already satisfied: wcwidth>=0.1.4 in /usr/local/lib/python3.10/dist-packages (from blessed>=1.17.7->enlighten->deeponto) (0.2.6)\n", | |
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (23.1.0)\n", | |
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (6.0.4)\n", | |
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (4.0.2)\n", | |
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (1.9.2)\n", | |
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (1.3.3)\n", | |
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->deeponto) (1.3.1)\n", | |
"Collecting jedi>=0.16 (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto)\n", | |
" Downloading jedi-0.18.2-py2.py3-none-any.whl (1.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m80.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (4.4.2)\n", | |
"Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.7.5)\n", | |
"Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (3.0.39)\n", | |
"Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (2.14.0)\n", | |
"Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.2.0)\n", | |
"Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.1.6)\n", | |
"Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (4.8.0)\n", | |
"Requirement already satisfied: blis<0.8.0,>=0.7.8 in /usr/local/lib/python3.10/dist-packages (from thinc<8.2.0,>=8.1.8->spacy->deeponto) (0.7.9)\n", | |
"Requirement already satisfied: confection<1.0.0,>=0.0.1 in /usr/local/lib/python3.10/dist-packages (from thinc<8.2.0,>=8.1.8->spacy->deeponto) (0.1.0)\n", | |
"Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (6.4.8)\n", | |
"Requirement already satisfied: jupyter-core>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-client->ipykernel->deeponto) (5.3.1)\n", | |
"Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.10/dist-packages (from jupyter-client->ipykernel->deeponto) (23.2.1)\n", | |
"Collecting protobuf>=4.22.3 (from tensorboardX->openprompt==1.0.0->deeponto)\n", | |
" Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m304.5/304.5 kB\u001b[0m \u001b[31m33.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.8.3)\n", | |
"Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.6.0->jupyter-client->ipykernel->deeponto) (3.8.1)\n", | |
"Requirement already satisfied: argon2-cffi in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (21.3.0)\n", | |
"Requirement already satisfied: nbformat in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (5.9.1)\n", | |
"Requirement already satisfied: nbconvert in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (6.5.4)\n", | |
"Requirement already satisfied: nest-asyncio>=1.5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.5.6)\n", | |
"Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.8.2)\n", | |
"Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.17.1)\n", | |
"Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.17.1)\n", | |
"Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=4.0.0->ipywidgets==7.7.1->deeponto) (0.7.0)\n", | |
"Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (21.2.0)\n", | |
"Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (4.11.2)\n", | |
"Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (6.0.0)\n", | |
"Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.7.1)\n", | |
"Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.4)\n", | |
"Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.2.2)\n", | |
"Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.8.4)\n", | |
"Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.8.0)\n", | |
"Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.5.0)\n", | |
"Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.2.1)\n", | |
"Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (2.17.1)\n", | |
"Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (4.3.3)\n", | |
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.19.3)\n", | |
"Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (1.15.1)\n", | |
"Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (2.4.1)\n", | |
"Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (0.5.1)\n", | |
"Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets==7.7.1->deeponto) (2.21)\n", | |
"Building wheels for collected packages: JPype1\n", | |
" Building wheel for JPype1 (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for JPype1: filename=JPype1-1.3.0-cp310-cp310-linux_x86_64.whl size=452719 sha256=fbb829c43eff08f106fe02cce559e97906f01b1fc42b3935a1735ae2d7406c39\n", | |
" Stored in directory: /root/.cache/pip/wheels/f5/c7/8f/c97c6c9868c256c8d17dabb772a2ca9002dcff2912fa8d7d58\n", | |
"Successfully built JPype1\n", | |
"Installing collected packages: tokenizers, sentencepiece, safetensors, prefixed, pprintpp, JPype1, yacs, xxhash, textdistance, rouge, protobuf, jedi, dill, blessed, anytree, tensorboardX, multiprocess, huggingface-hub, enlighten, transformers, datasets, openprompt, accelerate, deeponto\n", | |
" Attempting uninstall: protobuf\n", | |
" Found existing installation: protobuf 3.20.3\n", | |
" Uninstalling protobuf-3.20.3:\n", | |
" Successfully uninstalled protobuf-3.20.3\n", | |
"Successfully installed JPype1-1.3.0 accelerate-0.21.0 anytree-2.8.0 blessed-1.20.0 datasets-2.13.1 deeponto-0.8.3 dill-0.3.6 enlighten-1.11.2 huggingface-hub-0.16.4 jedi-0.18.2 multiprocess-0.70.14 openprompt-1.0.0 pprintpp-0.4.0 prefixed-0.7.0 protobuf-4.23.4 rouge-1.0.0 safetensors-0.3.1 sentencepiece-0.1.96 tensorboardX-2.6.1 textdistance-4.5.0 tokenizers-0.13.3 transformers-4.30.2 xxhash-3.2.0 yacs-0.1.8\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "DfcY0cL6gZvT", | |
"outputId": "81ba707e-662f-4796-9f71-fa3f03f54796" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Please enter the maximum memory located to JVM [8g]: \n", | |
"\n", | |
"8g maximum memory allocated to JVM.\n", | |
"JVM started successfully.\n" | |
] | |
} | |
], | |
"source": [ | |
"from deeponto.onto import Ontology\n", | |
"from deeponto.align.bertmap import BERTMapPipeline, DEFAULT_CONFIG_FILE" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"config_file = \"bertmap.yaml\"\n", | |
"#config_file = DEFAULT_CONFIG_FILE\n", | |
"src_onto_file = \"core.owl\"\n", | |
"tgt_onto_file = \"musicClasses.owl\"\n" | |
], | |
"metadata": { | |
"id": "9t-qx1QBgebN" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"config = BERTMapPipeline.load_bertmap_config(config_file)\n", | |
"#BERTMapPipeline.save_bertmap_config(config, \"bertmap.yaml\")" | |
], | |
"metadata": { | |
"id": "XZ4NorrMo7XN" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"src_onto = Ontology(src_onto_file)" | |
], | |
"metadata": { | |
"id": "9p4c3DmuhHI9" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"tgt_onto = Ontology(tgt_onto_file)" | |
], | |
"metadata": { | |
"id": "m2uAE1HUkULV" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"bertmap = BERTMapPipeline(src_onto, tgt_onto, config)" | |
], | |
"metadata": { | |
"id": "--jY5HGakY1t", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 1000, | |
"referenced_widgets": [ | |
"ec890c434cf64e25ab626afe0cb6e854", | |
"a8e27cf5a5d4446f8464af18d16f4801", | |
"0a082473ab794959aee42433e8135a75", | |
"4993060db7ee42b2bb166136ed9354a0", | |
"7868cf1717b647fa8b97ec27188deecb", | |
"94413b0dd065445088ed86ae7ada40bd", | |
"a75ab70c70ca48a5bb73f444c66a9e2f", | |
"c4e6c052dbaf461c91426ba4580cae8c", | |
"354e15e9d967472b9c0d9a07911445c7", | |
"5e2521a9f89046fdaf024e28a28b795a", | |
"a8d7519ef5264410842a4ea74b78cabb", | |
"a7ac42d9936f41309a8aff5425d94b2b", | |
"cd0905a7e62a4123a9c7416e6277b443", | |
"34da7ba75f454e92a7a20ca0c673a46e", | |
"29f9bf434a8240dba6d703acefb21e43", | |
"4644c51c742d49a6ae6d5221cd7f3e2b", | |
"20dce35a57ab4a028d64c8d5f3a581fb", | |
"0b900b15a0a043578c1faff2837893de", | |
"df60143cc2e04700a764f3e2464989bd", | |
"2a19131e775e4c348702207bd75b7173", | |
"6303c802724d4de095cfb6eb0c1f211a", | |
"f6ec3633f446455088f5aeeec135b3cc", | |
"4534cdc091c34b4984afdd0785d1b704", | |
"c87d67caaf9f44f4aa5c1fbd463a95f6", | |
"29e32ac284154391877765bb0b2f3c08", | |
"ac39cb7dd17a457d9b5b699347517ce3", | |
"7eaec7ae234f459e8a8cd47ced826534", | |
"f16248e331224f3ab1a52b9c12fc48b0", | |
"17d6bb23bcba4c7fb94034976ebdaa71", | |
"5af9add483864c65865532c719c55546", | |
"8468ae0946ba4ca3a9da129a3bd30539", | |
"4e8804e98d5d4c1b820a76a645f41fa2", | |
"63dcc28f046b4bfbabad06c4685bc5ed", | |
"ab77b4b66e3c4420b68d9a152e2f5f94", | |
"71d0036d63f8428cb641db89a91f5863", | |
"f9c3beaa5011495b93f34dd81ff85105", | |
"e9db58906bd246aa99e997b345df41f9", | |
"b2c811e83ad04c239a6b0f02779a6c04", | |
"f953b291f13d48ed8eeb378de481fd97", | |
"36eb4c09fb8442d984998256b1685674", | |
"b69aafa696c54305814383f1b9480a77", | |
"ecb897d08cbe4cf1a27a0166767728e8", | |
"6afdef24a38e4ad0924e859ee457e070", | |
"ef5ba9dcbda44e7da93382610e475ac6", | |
"5d3e0763f7d94308b49dc09b2b4122b0", | |
"be015cf809b845b68be2840ccc957fac", | |
"e623090bc151417aa5b657af72962c7d", | |
"b3741cd4e4d242c198891571222f29bb", | |
"511ff36170634426ae8c214cc19fc05e", | |
"d3768106138e4de483ffabf997521a13", | |
"474f4f9f315642bca605b208ef9329f3", | |
"911e2973859541cd8031018c09a8c87d", | |
"57bbc5c6bd814994ba79b49f28542545", | |
"29bf7797df74429f9936e930c8cf713b", | |
"1b6376141c7b406fbaa7548f3db913d5", | |
"45363d9cfedb47e1b71f5a85b7bf4bbd", | |
"5721177581654d92ba4fc99d39b0531a", | |
"ae76a15634a14567852d98242069fa4d", | |
"34ffa6a4d3ce48b2a0dbf0f372bc89a4", | |
"b1107b31ffb64710a5d86bb4251641e4", | |
"1b37382dcee144489835eb1d6cd62d8b", | |
"31f3ff2a62c84793b994c0a876c961d5", | |
"e8b0ecf68cde439c82d8015de54ce9d2", | |
"3f308be8a77c46c08d380c6086cb2528", | |
"2b9c738ec6ac40edaf6693723dffb9ea", | |
"95c24677986c4f1bb33fa42ac634ca13", | |
"1e52515097dc42d59b345b7b9ae6212f", | |
"c02d63124eb24141be21058b90c12ee9", | |
"22c358cfda944d39b0125b8ec64b7728", | |
"dde1e53215eb423cb32acec8f797cde6", | |
"0ed1f747ea0146cb91eeae9929117869", | |
"a2a12e476ad644e29ec0f5e0da45eb15", | |
"a13e75901a314685afe482083a907ceb", | |
"95eda72defec451bb0fba2e243dd6078", | |
"cbce32435289428488bd5089b16bb69b", | |
"29af4401b3c24b1f8475c7fc2567a44b", | |
"1e5dce056cff4c8f9a03f86c723c7dfe", | |
"330c983ed40a4fc7bc3152f0c15a30a8", | |
"c5fce70894134da1acf6783067492680", | |
"b35812ce037045a691adef223a2f72bb", | |
"b32f5786555949ddbc1382d0f3c437aa", | |
"de73894988fd4b35b848cb533d7baac1", | |
"4d11f22feab645879e72e3b25dfa9316", | |
"494e66e5be5a40038fa4bd6e33555da1", | |
"03211a2111ac46c1a4eaef479308163e", | |
"926c2b2924354497928caa99e312c958", | |
"7e49605b75a14e79a843aaf5edb1efcc", | |
"1bb7557c49534cf7994a2ccbb472853d", | |
"9beeec8bec6d4c27b990f5deb6fdbbec", | |
"808bbf3cadac440d816e6fe88b1402a1", | |
"6971a89c5dd24c03b5b3f207c289a193", | |
"d48dbbd433644e9eb75e11eeb6654072", | |
"dd04be6c2b1b491da93db1e00b2dd292", | |
"899cf4a72f684d6c9ca8e19aeccad236", | |
"d8d8ce97cd96483d8a527d723837efd6", | |
"e633737230934b0a8fdeedce48cb37d0", | |
"90c1badb1344448e87254cd12f6daea4", | |
"3724f5d886c341869f3f0e41e5358ec0", | |
"f9492b914a6a47d9857a3b97fb1c0790" | |
] | |
}, | |
"outputId": "dab9f1f6-c7c1-4dc3-e2ad-733004f40c36" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"metadata": { | |
"tags": null | |
}, | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"[Time: 00:00:00] - [PID: 1157] - [Model: bertmap] \n", | |
"Load the following configurations:\n", | |
"{\n", | |
" \"model\": \"bertmap\",\n", | |
" \"output_path\": \"/content\",\n", | |
" \"annotation_property_iris\": [\n", | |
" \"http://www.w3.org/2000/01/rdf-schema#label\",\n", | |
" \"http://www.geneontology.org/formats/oboInOwl#hasSynonym\",\n", | |
" \"http://www.geneontology.org/formats/oboInOwl#hasExactSynonym\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#exactMatch\",\n", | |
" \"http://www.ebi.ac.uk/efo/alternative_term\",\n", | |
" \"http://www.orpha.net/ORDO/Orphanet_#symbol\",\n", | |
" \"http://purl.org/sig/ont/fma/synonym\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#prefLabel\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#altLabel\",\n", | |
" \"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P108\",\n", | |
" \"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P90\"\n", | |
" ],\n", | |
" \"known_mappings\": null,\n", | |
" \"auxiliary_ontos\": [],\n", | |
" \"bert\": {\n", | |
" \"pretrained_path\": \"bert-base-uncased\",\n", | |
" \"max_length_for_input\": 128,\n", | |
" \"num_epochs_for_training\": 3.0,\n", | |
" \"batch_size_for_training\": 8,\n", | |
" \"batch_size_for_prediction\": 128,\n", | |
" \"resume_training\": null\n", | |
" },\n", | |
" \"global_matching\": {\n", | |
" \"enabled\": true,\n", | |
" \"num_raw_candidates\": 200,\n", | |
" \"num_best_predictions\": 10,\n", | |
" \"mapping_extension_threshold\": 0.8,\n", | |
" \"mapping_filtered_threshold\": 0.9\n", | |
" }\n", | |
"}\n", | |
"INFO:bertmap:Load the following configurations:\n", | |
"{\n", | |
" \"model\": \"bertmap\",\n", | |
" \"output_path\": \"/content\",\n", | |
" \"annotation_property_iris\": [\n", | |
" \"http://www.w3.org/2000/01/rdf-schema#label\",\n", | |
" \"http://www.geneontology.org/formats/oboInOwl#hasSynonym\",\n", | |
" \"http://www.geneontology.org/formats/oboInOwl#hasExactSynonym\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#exactMatch\",\n", | |
" \"http://www.ebi.ac.uk/efo/alternative_term\",\n", | |
" \"http://www.orpha.net/ORDO/Orphanet_#symbol\",\n", | |
" \"http://purl.org/sig/ont/fma/synonym\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#prefLabel\",\n", | |
" \"http://www.w3.org/2004/02/skos/core#altLabel\",\n", | |
" \"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P108\",\n", | |
" \"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P90\"\n", | |
" ],\n", | |
" \"known_mappings\": null,\n", | |
" \"auxiliary_ontos\": [],\n", | |
" \"bert\": {\n", | |
" \"pretrained_path\": \"bert-base-uncased\",\n", | |
" \"max_length_for_input\": 128,\n", | |
" \"num_epochs_for_training\": 3.0,\n", | |
" \"batch_size_for_training\": 8,\n", | |
" \"batch_size_for_prediction\": 128,\n", | |
" \"resume_training\": null\n", | |
" },\n", | |
" \"global_matching\": {\n", | |
" \"enabled\": true,\n", | |
" \"num_raw_candidates\": 200,\n", | |
" \"num_best_predictions\": 10,\n", | |
" \"mapping_extension_threshold\": 0.8,\n", | |
" \"mapping_filtered_threshold\": 0.9\n", | |
" }\n", | |
"}\n", | |
"[Time: 00:00:00] - [PID: 1157] - [Model: bertmap] \n", | |
"Save the configuration file at /content/bertmap/config.yaml.\n", | |
"INFO:bertmap:Save the configuration file at /content/bertmap/config.yaml.\n", | |
"[Time: 00:00:01] - [PID: 1157] - [Model: bertmap] \n", | |
"Construct new text semantics corpora and save at /content/bertmap/data/text-semantics.corpora.json.\n", | |
"INFO:bertmap:Construct new text semantics corpora and save at /content/bertmap/data/text-semantics.corpora.json.\n", | |
"[Time: 00:00:05] - [PID: 1157] - [Model: bertmap] \n", | |
"{\n", | |
" \"TextSemanticsCorpora\": {\n", | |
" \"num_synonyms\": 10617,\n", | |
" \"num_nonsynonyms\": 42440,\n", | |
" \"intra_src_onto_corpus\": {\n", | |
" \"num_synonyms\": 51,\n", | |
" \"num_nonsynonyms\": 204,\n", | |
" \"num_soft_nonsynonyms\": 137,\n", | |
" \"num_hard_nonsynonyms\": 67,\n", | |
" \"annotation_thesaurus\": {\n", | |
" \"ontology\": {\n", | |
" \"loaded_from\": \"core.owl\",\n", | |
" \"num_classes\": 49,\n", | |
" \"num_object_properties\": 81,\n", | |
" \"num_data_properties\": 13,\n", | |
" \"num_annotation_properties\": 8\n", | |
" },\n", | |
" \"average_number_of_annotations_per_class\": 1.0,\n", | |
" \"number_of_synonym_groups\": 49\n", | |
" }\n", | |
" },\n", | |
" \"intra_tgt_onto_corpus\": {\n", | |
" \"num_synonyms\": 10566,\n", | |
" \"num_nonsynonyms\": 42264,\n", | |
" \"num_soft_nonsynonyms\": 21176,\n", | |
" \"num_hard_nonsynonyms\": 21088,\n", | |
" \"annotation_thesaurus\": {\n", | |
" \"ontology\": {\n", | |
" \"loaded_from\": \"musicClasses.owl\",\n", | |
" \"num_classes\": 5830,\n", | |
" \"num_object_properties\": 0,\n", | |
" \"num_data_properties\": 0,\n", | |
" \"num_annotation_properties\": 3\n", | |
" },\n", | |
" \"average_number_of_annotations_per_class\": 1.213,\n", | |
" \"number_of_synonym_groups\": 5830\n", | |
" }\n", | |
" },\n", | |
" \"cross_onto_corpus\": null,\n", | |
" \"auxiliary_onto_corpora\": []\n", | |
" }\n", | |
"}\n", | |
"INFO:bertmap:{\n", | |
" \"TextSemanticsCorpora\": {\n", | |
" \"num_synonyms\": 10617,\n", | |
" \"num_nonsynonyms\": 42440,\n", | |
" \"intra_src_onto_corpus\": {\n", | |
" \"num_synonyms\": 51,\n", | |
" \"num_nonsynonyms\": 204,\n", | |
" \"num_soft_nonsynonyms\": 137,\n", | |
" \"num_hard_nonsynonyms\": 67,\n", | |
" \"annotation_thesaurus\": {\n", | |
" \"ontology\": {\n", | |
" \"loaded_from\": \"core.owl\",\n", | |
" \"num_classes\": 49,\n", | |
" \"num_object_properties\": 81,\n", | |
" \"num_data_properties\": 13,\n", | |
" \"num_annotation_properties\": 8\n", | |
" },\n", | |
" \"average_number_of_annotations_per_class\": 1.0,\n", | |
" \"number_of_synonym_groups\": 49\n", | |
" }\n", | |
" },\n", | |
" \"intra_tgt_onto_corpus\": {\n", | |
" \"num_synonyms\": 10566,\n", | |
" \"num_nonsynonyms\": 42264,\n", | |
" \"num_soft_nonsynonyms\": 21176,\n", | |
" \"num_hard_nonsynonyms\": 21088,\n", | |
" \"annotation_thesaurus\": {\n", | |
" \"ontology\": {\n", | |
" \"loaded_from\": \"musicClasses.owl\",\n", | |
" \"num_classes\": 5830,\n", | |
" \"num_object_properties\": 0,\n", | |
" \"num_data_properties\": 0,\n", | |
" \"num_annotation_properties\": 3\n", | |
" },\n", | |
" \"average_number_of_annotations_per_class\": 1.213,\n", | |
" \"number_of_synonym_groups\": 5830\n", | |
" }\n", | |
" },\n", | |
" \"cross_onto_corpus\": null,\n", | |
" \"auxiliary_onto_corpora\": []\n", | |
" }\n", | |
"}\n", | |
"[Time: 00:00:06] - [PID: 1157] - [Model: bertmap] \n", | |
"Construct new fine-tuning data and save at /content/bertmap/data/fine-tune.data.json.\n", | |
"INFO:bertmap:Construct new fine-tuning data and save at /content/bertmap/data/fine-tune.data.json.\n" | |
] | |
}, | |
{ | |
"metadata": { | |
"tags": null | |
}, | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Loading a BERT model from: bert-base-uncased.\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "ec890c434cf64e25ab626afe0cb6e854", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Downloading (…)lve/main/config.json: 0%| | 0.00/570 [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "a7ac42d9936f41309a8aff5425d94b2b", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Downloading model.safetensors: 0%| | 0.00/440M [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"metadata": { | |
"tags": null | |
}, | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.dense.bias', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias']\n", | |
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", | |
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", | |
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", | |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "4534cdc091c34b4984afdd0785d1b704", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Downloading (…)okenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "ab77b4b66e3c4420b68d9a152e2f5f94", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Downloading (…)solve/main/vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "5d3e0763f7d94308b49dc09b2b4122b0", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Downloading (…)/main/tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"metadata": { | |
"tags": null | |
}, | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Downloading and preparing dataset generator/default to /root/.cache/huggingface/datasets/generator/default-af5c7f22885a977e/0.0.0...\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "45363d9cfedb47e1b71f5a85b7bf4bbd", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Generating train split: 0 examples [00:00, ? examples/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"metadata": { | |
"tags": null | |
}, | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Dataset generator downloaded and prepared to /root/.cache/huggingface/datasets/generator/default-af5c7f22885a977e/0.0.0. Subsequent calls will reuse this data.\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "1e52515097dc42d59b345b7b9ae6212f", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Load training data:: 0%| | 0/47751 [00:00<?, ? examples/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"metadata": { | |
"tags": null | |
}, | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Downloading and preparing dataset generator/default to /root/.cache/huggingface/datasets/generator/default-894705cdb5a12c38/0.0.0...\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "330c983ed40a4fc7bc3152f0c15a30a8", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Generating train split: 0 examples [00:00, ? examples/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"metadata": { | |
"tags": null | |
}, | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Dataset generator downloaded and prepared to /root/.cache/huggingface/datasets/generator/default-894705cdb5a12c38/0.0.0. Subsequent calls will reuse this data.\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "9beeec8bec6d4c27b990f5deb6fdbbec", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Load validation data:: 0%| | 0/5306 [00:00<?, ? examples/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"metadata": { | |
"tags": null | |
}, | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"[Time: 00:00:45] - [PID: 1157] - [Model: bertmap] \n", | |
"Data statistics:\n", | |
" {\n", | |
" \"num_training\": 47751,\n", | |
" \"num_validation\": 5306\n", | |
"}\n", | |
"INFO:bertmap:Data statistics:\n", | |
" {\n", | |
" \"num_training\": 47751,\n", | |
" \"num_validation\": 5306\n", | |
"}\n", | |
"/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", | |
" warnings.warn(\n", | |
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"\n", | |
" <div>\n", | |
" \n", | |
" <progress value='10174' max='17907' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
" [10174/17907 16:40 < 12:40, 10.16 it/s, Epoch 1.70/3]\n", | |
" </div>\n", | |
" <table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: left;\">\n", | |
" <th>Step</th>\n", | |
" <th>Training Loss</th>\n", | |
" <th>Validation Loss</th>\n", | |
" <th>Accuracy</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>1190</td>\n", | |
" <td>0.180400</td>\n", | |
" <td>0.134559</td>\n", | |
" <td>0.966830</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2380</td>\n", | |
" <td>0.160200</td>\n", | |
" <td>0.220188</td>\n", | |
" <td>0.958161</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3570</td>\n", | |
" <td>0.140600</td>\n", | |
" <td>0.148751</td>\n", | |
" <td>0.967961</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4760</td>\n", | |
" <td>0.156600</td>\n", | |
" <td>0.131978</td>\n", | |
" <td>0.973803</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>5950</td>\n", | |
" <td>0.176300</td>\n", | |
" <td>0.123046</td>\n", | |
" <td>0.968149</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>7140</td>\n", | |
" <td>0.121700</td>\n", | |
" <td>0.124406</td>\n", | |
" <td>0.975688</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>8330</td>\n", | |
" <td>0.092400</td>\n", | |
" <td>0.131357</td>\n", | |
" <td>0.973803</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>9520</td>\n", | |
" <td>0.132700</td>\n", | |
" <td>0.121100</td>\n", | |
" <td>0.974557</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table><p>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
" <div>\n", | |
" \n", | |
" <progress value='17907' max='17907' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
" [17907/17907 29:56, Epoch 3/3]\n", | |
" </div>\n", | |
" <table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: left;\">\n", | |
" <th>Step</th>\n", | |
" <th>Training Loss</th>\n", | |
" <th>Validation Loss</th>\n", | |
" <th>Accuracy</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>1190</td>\n", | |
" <td>0.180400</td>\n", | |
" <td>0.134559</td>\n", | |
" <td>0.966830</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2380</td>\n", | |
" <td>0.160200</td>\n", | |
" <td>0.220188</td>\n", | |
" <td>0.958161</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3570</td>\n", | |
" <td>0.140600</td>\n", | |
" <td>0.148751</td>\n", | |
" <td>0.967961</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4760</td>\n", | |
" <td>0.156600</td>\n", | |
" <td>0.131978</td>\n", | |
" <td>0.973803</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>5950</td>\n", | |
" <td>0.176300</td>\n", | |
" <td>0.123046</td>\n", | |
" <td>0.968149</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>7140</td>\n", | |
" <td>0.121700</td>\n", | |
" <td>0.124406</td>\n", | |
" <td>0.975688</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>8330</td>\n", | |
" <td>0.092400</td>\n", | |
" <td>0.131357</td>\n", | |
" <td>0.973803</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>9520</td>\n", | |
" <td>0.132700</td>\n", | |
" <td>0.121100</td>\n", | |
" <td>0.974557</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>10710</td>\n", | |
" <td>0.104200</td>\n", | |
" <td>0.096886</td>\n", | |
" <td>0.980776</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>11900</td>\n", | |
" <td>0.071700</td>\n", | |
" <td>0.099802</td>\n", | |
" <td>0.980776</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>13090</td>\n", | |
" <td>0.030700</td>\n", | |
" <td>0.128937</td>\n", | |
" <td>0.979646</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>14280</td>\n", | |
" <td>0.075900</td>\n", | |
" <td>0.105145</td>\n", | |
" <td>0.981153</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>15470</td>\n", | |
" <td>0.066800</td>\n", | |
" <td>0.101512</td>\n", | |
" <td>0.982096</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>16660</td>\n", | |
" <td>0.063800</td>\n", | |
" <td>0.104218</td>\n", | |
" <td>0.982096</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>17850</td>\n", | |
" <td>0.033200</td>\n", | |
" <td>0.106335</td>\n", | |
" <td>0.982473</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table><p>" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"[Time: 00:30:45] - [PID: 1157] - [Model: bertmap] \n", | |
"Fine-tuning finished, found best checkpoint at /content/bertmap/bert/checkpoint-10710.\n", | |
"INFO:bertmap:Fine-tuning finished, found best checkpoint at /content/bertmap/bert/checkpoint-10710.\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"The BERT model is set to eval mode for making predictions.\n", | |
"There are 1 GPU(s) available.\n", | |
"We will use the GPU: Tesla T4\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"<style>\n", | |
".enlighten-bold {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
".enlighten-underline {\n", | |
" text-decoration: underline;\n", | |
"}\n", | |
".enlighten-fg-bright-white {\n", | |
" color: #ffffff;\n", | |
"}\n", | |
".enlighten-bg-lightslategray {\n", | |
" background-color: #778899;\n", | |
"}\n", | |
"</style>\n", | |
"<div class=\"enlighten\">\n", | |
" <div class=\"enlighten-bar\">\n", | |
" <pre><span class=\"enlighten-bold enlighten-underline enlighten-fg-bright-white enlighten-bg-lightslategray\">Global Matching Stage: Mapping Extension 00:12</span></pre>\n", | |
" </div>\n", | |
" <div class=\"enlighten-bar\">\n", | |
" <pre>Mapping Prediction 100%|█████████████████████████████████| 49/49 [00:12<00:00, 4.14 per src class/s]</pre>\n", | |
" </div>\n", | |
" <div class=\"enlighten-bar\">\n", | |
" <pre>Mapping Extension [Iteration #0] 32 mapping [00:00, 127.01 mapping/s] </pre>\n", | |
" </div>\n", | |
" <div class=\"enlighten-bar\">\n", | |
" <pre></pre>\n", | |
" </div>\n", | |
"</div>\n" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"Build inverted annotation index for candidate selection.\n", | |
"INFO:bertmap:Build inverted annotation index for candidate selection.\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"Start global matching for each class in the source ontology.\n", | |
"INFO:bertmap:Start global matching for each class in the source ontology.\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for http://www.w3.org/2002/07/owl#Thing are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for http://www.w3.org/2002/07/owl#Thing are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"Save currently computed mappings to prevent undesirable loss.\n", | |
"INFO:bertmap:Save currently computed mappings to prevent undesirable loss.\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Action are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Action are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Address are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Address are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/AddressComponent are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/AddressComponent are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Agent are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Agent are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/AgentRole are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/AgentRole are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Alias are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Alias are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/CellectionMembershipStrength are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/CellectionMembershipStrength are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/City are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q11307326, 0.998486), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q2488422, 0.981502), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q166813, 0.966148), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q113086512, 0.964788), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q109915203, 0.937452), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q420965, 0.930741)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/City are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q11307326, 0.998486), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q2488422, 0.981502), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q166813, 0.966148), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q113086512, 0.964788), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q109915203, 0.937452), EntityMapping(https://w3id.org/polifonia/ontology/core/City <EquivalentTo> http://www.wikidata.org/entity/Q420965, 0.930741)]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Collection are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Collection are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/CollectionConcept are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/CollectionConcept are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/CollectionMembership are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/CollectionMembership are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Concept are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Concept <EquivalentTo> http://www.wikidata.org/entity/Q5158398, 0.998488)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Concept are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Concept <EquivalentTo> http://www.wikidata.org/entity/Q5158398, 0.998488)]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Country are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q83440, 0.998482), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q1773654, 0.969505), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q649823, 0.965924), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q65943778, 0.964088), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q2280497, 0.950376), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q55608482, 0.932785), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q110471067, 0.932402), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q5762403, 0.932002), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q5128236, 0.931906), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q1425111, 0.93147)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Country are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q83440, 0.998482), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q1773654, 0.969505), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q649823, 0.965924), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q65943778, 0.964088), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q2280497, 0.950376), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q55608482, 0.932785), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q110471067, 0.932402), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q5762403, 0.932002), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q5128236, 0.931906), EntityMapping(https://w3id.org/polifonia/ontology/core/Country <EquivalentTo> http://www.wikidata.org/entity/Q1425111, 0.93147)]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Description are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Description are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/District are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/District are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Event are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Event are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Explanation are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Explanation are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/GeographicalFeature are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/GeographicalFeature are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/InformationObject are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/InformationObject are\n", | |
"[]\n", | |
"[Time: 00:30:46] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/InformationRealization are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/InformationRealization are\n", | |
"[]\n", | |
"[Time: 00:30:47] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Language are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Language <EquivalentTo> http://www.wikidata.org/entity/Q107565306, 0.998358)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Language are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Language <EquivalentTo> http://www.wikidata.org/entity/Q107565306, 0.998358)]\n", | |
"[Time: 00:30:48] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicDataset are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicDataset are\n", | |
"[]\n", | |
"[Time: 00:30:49] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeDuration are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeDuration are\n", | |
"[]\n", | |
"[Time: 00:30:51] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeIndex are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeIndex are\n", | |
"[]\n", | |
"[Time: 00:30:52] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeIndexComponent are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeIndexComponent are\n", | |
"[]\n", | |
"[Time: 00:30:54] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeInterval are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/MusicTimeInterval <EquivalentTo> http://www.wikidata.org/entity/Q1349335, 0.964649)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeInterval are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/MusicTimeInterval <EquivalentTo> http://www.wikidata.org/entity/Q1349335, 0.964649)]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeValueType are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/MusicTimeValueType are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Name are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Name are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Organization are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Organization <EquivalentTo> http://www.wikidata.org/entity/Q32178211, 0.998479), EntityMapping(https://w3id.org/polifonia/ontology/core/Organization <EquivalentTo> http://www.wikidata.org/entity/Q65931568, 0.969553)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Organization are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Organization <EquivalentTo> http://www.wikidata.org/entity/Q32178211, 0.998479), EntityMapping(https://w3id.org/polifonia/ontology/core/Organization <EquivalentTo> http://www.wikidata.org/entity/Q65931568, 0.969553)]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Person are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Person <EquivalentTo> http://www.wikidata.org/entity/Q11481323, 0.967747), EntityMapping(https://w3id.org/polifonia/ontology/core/Person <EquivalentTo> http://www.wikidata.org/entity/Q106547149, 0.948868)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Person are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Person <EquivalentTo> http://www.wikidata.org/entity/Q11481323, 0.967747), EntityMapping(https://w3id.org/polifonia/ontology/core/Person <EquivalentTo> http://www.wikidata.org/entity/Q106547149, 0.948868)]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/PhysicalSite are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/PhysicalSite are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Place are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Place are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Province are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Province are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Reference are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Reference are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Region are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Region <EquivalentTo> http://www.wikidata.org/entity/Q28702252, 0.955334)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Region are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Region <EquivalentTo> http://www.wikidata.org/entity/Q28702252, 0.955334)]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Role are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Role are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Situation are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Situation are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Source are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Source <EquivalentTo> http://www.wikidata.org/entity/Q7095719, 0.922145)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Source are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Source <EquivalentTo> http://www.wikidata.org/entity/Q7095719, 0.922145)]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/SpatialObject are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/SpatialObject are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Street are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Street <EquivalentTo> http://www.wikidata.org/entity/Q11870448, 0.998488), EntityMapping(https://w3id.org/polifonia/ontology/core/Street <EquivalentTo> http://www.wikidata.org/entity/Q2354912, 0.998486), EntityMapping(https://w3id.org/polifonia/ontology/core/Street <EquivalentTo> http://www.wikidata.org/entity/Q383615, 0.998449), EntityMapping(https://w3id.org/polifonia/ontology/core/Street <EquivalentTo> http://www.wikidata.org/entity/Q3975956, 0.982242)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Street are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Street <EquivalentTo> http://www.wikidata.org/entity/Q11870448, 0.998488), EntityMapping(https://w3id.org/polifonia/ontology/core/Street <EquivalentTo> http://www.wikidata.org/entity/Q2354912, 0.998486), EntityMapping(https://w3id.org/polifonia/ontology/core/Street <EquivalentTo> http://www.wikidata.org/entity/Q383615, 0.998449), EntityMapping(https://w3id.org/polifonia/ontology/core/Street <EquivalentTo> http://www.wikidata.org/entity/Q3975956, 0.982242)]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Task are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Task are\n", | |
"[]\n", | |
"[Time: 00:30:55] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Theory are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Theory are\n", | |
"[]\n", | |
"[Time: 00:30:57] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/TimeIndexedName are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/TimeIndexedName are\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/TimeIndexedRole are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/TimeIndexedRole are\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/TimeIndexedSituation are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/TimeIndexedSituation are\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/TimeInterval are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/TimeInterval <EquivalentTo> http://www.wikidata.org/entity/Q1349335, 0.998472)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/TimeInterval are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/TimeInterval <EquivalentTo> http://www.wikidata.org/entity/Q1349335, 0.998472)]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Title are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Title <EquivalentTo> http://www.wikidata.org/entity/Q105107253, 0.998485), EntityMapping(https://w3id.org/polifonia/ontology/core/Title <EquivalentTo> http://www.wikidata.org/entity/Q107124378, 0.998389)]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Title are\n", | |
"[EntityMapping(https://w3id.org/polifonia/ontology/core/Title <EquivalentTo> http://www.wikidata.org/entity/Q105107253, 0.998485), EntityMapping(https://w3id.org/polifonia/ontology/core/Title <EquivalentTo> http://www.wikidata.org/entity/Q107124378, 0.998389)]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"The best scored class mappings for https://w3id.org/polifonia/ontology/core/Type are\n", | |
"[]\n", | |
"INFO:bertmap:The best scored class mappings for https://w3id.org/polifonia/ontology/core/Type are\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"Save currently computed mappings to prevent undesirable loss.\n", | |
"INFO:bertmap:Save currently computed mappings to prevent undesirable loss.\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"Finished mapping prediction for each class in the source ontology.\n", | |
"INFO:bertmap:Finished mapping prediction for each class in the source ontology.\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"Start mapping extension for each class pair with score >= 0.8.\n", | |
"INFO:bertmap:Start mapping extension for each class pair with score >= 0.8.\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q11307326') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q11307326') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q2488422') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q2488422') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q166813') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q166813') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q113086512') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q113086512') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q109915203') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q109915203') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q420965') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/City', 'http://www.wikidata.org/entity/Q420965') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Concept', 'http://www.wikidata.org/entity/Q5158398') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Concept', 'http://www.wikidata.org/entity/Q5158398') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q83440') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q83440') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q1773654') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q1773654') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q649823') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q649823') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q65943778') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q65943778') are:\n", | |
"[]\n", | |
"[Time: 00:30:58] - [PID: 1157] - [Model: bertmap] \n", | |
"New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q2280497') are:\n", | |
"[]\n", | |
"INFO:bertmap:New mappings (in tuples) extended from ('https://w3id.org/polifonia/ontology/core/Country', 'http://www.wikidata.org/entity/Q2280497') are:\n", | |
"[]\n" | |
] | |
}, | |
{ | |
"output_type": "error", | |
"ename": "IndexError", | |
"evalue": "ignored", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-9-a888744a31b2>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mbertmap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBERTMapPipeline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_onto\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_onto\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/pipeline.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src_onto, tgt_onto, config)\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[0menlighten_status\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menlighten_status\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 192\u001b[0m )\n\u001b[0;32m--> 193\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_refiner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_extension\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# mapping extension\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 194\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_refiner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_repair\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# mapping repair\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 195\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menlighten_status\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdemo\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Finished\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/mapping_refinement.py\u001b[0m in \u001b[0;36mmapping_extension\u001b[0;34m(self, max_iter)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msrc_class_iri\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_class_iri\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mfrontier\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[0;31m# one hop extension makes sure new mappings are really \"new\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 165\u001b[0;31m \u001b[0mcur_new_mappings\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mone_hop_extend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_class_iri\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_class_iri\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 166\u001b[0m \u001b[0mextension_progress_bar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcur_new_mappings\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 167\u001b[0m \u001b[0mnew_mappings\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mcur_new_mappings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/mapping_refinement.py\u001b[0m in \u001b[0;36mone_hop_extend\u001b[0;34m(self, src_class_iri, tgt_class_iri, pool_size)\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[0msrc_candidate_annotations\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_predictor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc_annotation_index\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0msrc_candidate_iri\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0mtgt_candidate_annotations\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_predictor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtgt_annotation_index\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtgt_candidate_iri\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m \u001b[0mscore\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_predictor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbert_mapping_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_candidate_annotations\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_candidate_annotations\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 254\u001b[0m \u001b[0;31m# add to already scored collection\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmapping_score_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_candidate_iri\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_candidate_iri\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscore\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/mapping_prediction.py\u001b[0m in \u001b[0;36mbert_mapping_score\u001b[0;34m(self, src_class_annotations, tgt_class_annotations)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[0;31m# apply BERT classifier and define mapping score := Average(SynonymScores)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0mclass_annotation_pairs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitertools\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproduct\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc_class_annotations\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtgt_class_annotations\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 109\u001b[0;31m \u001b[0msynonym_scores\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbert_synonym_classifier\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclass_annotation_pairs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 110\u001b[0m \u001b[0;31m# only one element tensor is able to be extracted as a scalar by .item()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfloat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msynonym_scores\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/bert_classifier.py\u001b[0m in \u001b[0;36mpredict\u001b[0;34m(self, sent_pairs)\u001b[0m\n\u001b[1;32m 155\u001b[0m \u001b[0mReturn\u001b[0m \u001b[0mthe\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0msoftmax\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mprobailities\u001b[0m \u001b[0mof\u001b[0m \u001b[0mpredicting\u001b[0m \u001b[0mpairs\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msynonyms\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 156\u001b[0m \"\"\"\n\u001b[0;32m--> 157\u001b[0;31m \u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprocess_inputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msent_pairs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 158\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mno_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 159\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msoftmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlogits\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/deeponto/align/bertmap/bert_classifier.py\u001b[0m in \u001b[0;36mprocess_inputs\u001b[0;34m(self, sent_pairs)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mThis\u001b[0m \u001b[0mfunction\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mcalled\u001b[0m \u001b[0monly\u001b[0m \u001b[0mwhen\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mBERT\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mabout\u001b[0m \u001b[0mto\u001b[0m \u001b[0mmake\u001b[0m \u001b[0mpredictions\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0meval\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \"\"\"\n\u001b[0;32m--> 185\u001b[0;31m return self.tokenizer._tokenizer(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0msent_pairs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0mreturn_tensors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"pt\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, text, text_pair, text_target, text_pair_target, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)\u001b[0m\n\u001b[1;32m 2559\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_in_target_context_manager\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2560\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_switch_to_input_mode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2561\u001b[0;31m \u001b[0mencodings\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_one\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtext_pair\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtext_pair\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mall_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2562\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtext_target\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2563\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_switch_to_target_mode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py\u001b[0m in \u001b[0;36m_call_one\u001b[0;34m(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)\u001b[0m\n\u001b[1;32m 2645\u001b[0m )\n\u001b[1;32m 2646\u001b[0m \u001b[0mbatch_text_or_text_pairs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtext_pair\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtext_pair\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mtext\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2647\u001b[0;31m return self.batch_encode_plus(\n\u001b[0m\u001b[1;32m 2648\u001b[0m \u001b[0mbatch_text_or_text_pairs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbatch_text_or_text_pairs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2649\u001b[0m \u001b[0madd_special_tokens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0madd_special_tokens\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py\u001b[0m in \u001b[0;36mbatch_encode_plus\u001b[0;34m(self, batch_text_or_text_pairs, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)\u001b[0m\n\u001b[1;32m 2836\u001b[0m )\n\u001b[1;32m 2837\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2838\u001b[0;31m return self._batch_encode_plus(\n\u001b[0m\u001b[1;32m 2839\u001b[0m \u001b[0mbatch_text_or_text_pairs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbatch_text_or_text_pairs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2840\u001b[0m \u001b[0madd_special_tokens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0madd_special_tokens\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_fast.py\u001b[0m in \u001b[0;36m_batch_encode_plus\u001b[0;34m(self, batch_text_or_text_pairs, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0;31m# we add an overflow_to_sample_mapping array (see below)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0msanitized_tokens\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtokens_and_encodings\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0mstack\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0me\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtokens_and_encodings\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mitem\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0msanitized_tokens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstack\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mIndexError\u001b[0m: list index out of range" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!zip -r /content/bertmap-output.zip /content/bertmap/match" | |
], | |
"metadata": { | |
"id": "NnZ6PZPte4SI" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!rm -rf /content/bertmap" | |
], | |
"metadata": { | |
"id": "NKyshVXEiVKk" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment