Last active
November 9, 2024 08:09
-
-
Save Denbergvanthijs/7f6936ca90a683d37216fd80f5750e9c to your computer and use it in GitHub Desktop.
3D spinning donut in Python. Based on the pseudocode from: https://www.a1k0n.net/2011/07/20/donut-math.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
screen_size = 40 | |
theta_spacing = 0.07 | |
phi_spacing = 0.02 | |
illumination = np.fromiter(".,-~:;=!*#$@", dtype="<U1") | |
A = 1 | |
B = 1 | |
R1 = 1 | |
R2 = 2 | |
K2 = 5 | |
K1 = screen_size * K2 * 3 / (8 * (R1 + R2)) | |
def render_frame(A: float, B: float) -> np.ndarray: | |
""" | |
Returns a frame of the spinning 3D donut. | |
Based on the pseudocode from: https://www.a1k0n.net/2011/07/20/donut-math.html | |
""" | |
cos_A = np.cos(A) | |
sin_A = np.sin(A) | |
cos_B = np.cos(B) | |
sin_B = np.sin(B) | |
output = np.full((screen_size, screen_size), " ") # (40, 40) | |
zbuffer = np.zeros((screen_size, screen_size)) # (40, 40) | |
cos_phi = np.cos(phi := np.arange(0, 2 * np.pi, phi_spacing)) # (315,) | |
sin_phi = np.sin(phi) # (315,) | |
cos_theta = np.cos(theta := np.arange(0, 2 * np.pi, theta_spacing)) # (90,) | |
sin_theta = np.sin(theta) # (90,) | |
circle_x = R2 + R1 * cos_theta # (90,) | |
circle_y = R1 * sin_theta # (90,) | |
x = (np.outer(cos_B * cos_phi + sin_A * sin_B * sin_phi, circle_x) - circle_y * cos_A * sin_B).T # (90, 315) | |
y = (np.outer(sin_B * cos_phi - sin_A * cos_B * sin_phi, circle_x) + circle_y * cos_A * cos_B).T # (90, 315) | |
z = ((K2 + cos_A * np.outer(sin_phi, circle_x)) + circle_y * sin_A).T # (90, 315) | |
ooz = np.reciprocal(z) # Calculates 1/z | |
xp = (screen_size / 2 + K1 * ooz * x).astype(int) # (90, 315) | |
yp = (screen_size / 2 - K1 * ooz * y).astype(int) # (90, 315) | |
L1 = (((np.outer(cos_phi, cos_theta) * sin_B) - cos_A * np.outer(sin_phi, cos_theta)) - sin_A * sin_theta) # (315, 90) | |
L2 = cos_B * (cos_A * sin_theta - np.outer(sin_phi, cos_theta * sin_A)) # (315, 90) | |
L = np.around(((L1 + L2) * 8)).astype(int).T # (90, 315) | |
mask_L = L >= 0 # (90, 315) | |
chars = illumination[L] # (90, 315) | |
for i in range(90): | |
mask = mask_L[i] & (ooz[i] > zbuffer[xp[i], yp[i]]) # (315,) | |
zbuffer[xp[i], yp[i]] = np.where(mask, ooz[i], zbuffer[xp[i], yp[i]]) | |
output[xp[i], yp[i]] = np.where(mask, chars[i], output[xp[i], yp[i]]) | |
return output | |
def pprint(array: np.ndarray) -> None: | |
"""Pretty print the frame.""" | |
print(*[" ".join(row) for row in array], sep="\n") | |
if __name__ == "__main__": | |
for _ in range(screen_size * screen_size): | |
A += theta_spacing | |
B += phi_spacing | |
print("\x1b[H") | |
pprint(render_frame(A, B)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
like this:
import numpy as np
from time import sleep
import os
screen_size = 40
theta_spacing = 0.07
phi_spacing = 0.02
illumination = np.fromiter(".,-~:;=!*#$@", dtype="<U1")
A = 1
B = 1
R1 = 1
R2 = 2
K2 = 5
K1 = screen_size * K2 * 3 / (8 * (R1 + R2))
def render_frame(A: float, B: float) -> np.ndarray:
"""
Returns a frame of the spinning 3D donut.
Based on the pseudocode from: https://www.a1k0n.net/2011/07/20/donut-math.html
"""
cos_A = np.cos(A)
sin_A = np.sin(A)
cos_B = np.cos(B)
sin_B = np.sin(B)
def pprint(array: np.ndarray) -> None:
"""Pretty print the frame."""
print(*[" ".join(row) for row in array], sep="\n")
if name == "main":
for _ in range(screen_size * screen_size):
A += theta_spacing
B += phi_spacing
print("\x1b[H")
os.system('cls')
pprint(render_frame(A, B))
sleep(0.05)