-
-
Save DmitrySoshnikov/924ceefb1784b30c5ca6 to your computer and use it in GitHub Desktop.
/** | |
* LL(1) parser. Building parsing table, part 1: First and Follow sets. | |
* | |
* NOTICE: see full implementation in the Syntax tool, here: | |
* https://github.com/DmitrySoshnikov/syntax/blob/master/src/sets-generator.js | |
* | |
* by Dmitry Soshnikov <[email protected]> | |
* MIT Style License | |
* | |
* An LL(1)-parser is a top-down, fast predictive non-recursive parser, | |
* which uses a state-machine parsing table instead of recursive calls | |
* to productions as in a recursive descent parser. | |
* | |
* We described the work of such a parser in: | |
* https://gist.github.com/DmitrySoshnikov/29f7a9425cdab69ea68f | |
* | |
* There we used manually pre-built parsing table. In this diff we implement | |
* an automatic solution for generating a parsing table, and consider the | |
* first part of it: building First and Follow sets. | |
* | |
* First and Follow sets are used to determine which next production to use | |
* if we have symbol `A` on the stack, and symbol `a` in the buffer. | |
* | |
* First sets: | |
* | |
* First sets are everything that stands in the first position in a derivation. | |
* If we have a production `A -> aB`, then the symbol `a` is in the first set | |
* of `A`, and whenever we have symbol `A` on the stack, and symbol `a` in | |
* the buffer, we should use `A -> aB` production. If instead we have a | |
* non-terminal on the right hand side, like e.g. in `A -> BC`, then in order | |
* to calculate first set of `A`, we should calculate first set of `BC`, and | |
* then merge it to `A`. | |
* | |
* Follow sets: | |
* | |
* Follow sets are used when a symbol can be `ε` ("empty" symbol known as | |
* epsilon). In a productions like: `A -> bXa`, if `X` can be `ε`, then it'll | |
* be eliminated, and we still will be able to derive `a` which follows `X`. | |
* So we say that `a` is in follow set of `X`. | |
* | |
* These are the basic rules. We'll cover all the details in the implementation | |
* below. | |
*/ | |
// Special "empty" symbol. | |
var EPSILON = "ε"; | |
var firstSets = {}; | |
var followSets = {}; | |
/** | |
* Rules for First Sets | |
* | |
* - If X is a terminal then First(X) is just X! | |
* - If there is a Production X → ε then add ε to first(X) | |
* - If there is a Production X → Y1Y2..Yk then add first(Y1Y2..Yk) to first(X) | |
* - First(Y1Y2..Yk) is either | |
* - First(Y1) (if First(Y1) doesn't contain ε) | |
* - OR (if First(Y1) does contain ε) then First (Y1Y2..Yk) is everything | |
* in First(Y1) <except for ε > as well as everything in First(Y2..Yk) | |
* - If First(Y1) First(Y2)..First(Yk) all contain ε then add ε | |
* to First(Y1Y2..Yk) as well. | |
*/ | |
function buildFirstSets(grammar) { | |
firstSets = {}; | |
buildSet(firstOf); | |
} | |
function firstOf(symbol) { | |
// A set may already be built from some previous analysis | |
// of a RHS, so check whether it's already there and don't rebuild. | |
if (firstSets[symbol]) { | |
return firstSets[symbol]; | |
} | |
// Else init and calculate. | |
var first = firstSets[symbol] = {}; | |
// If it's a terminal, its first set is just itself. | |
if (isTerminal(symbol)) { | |
first[symbol] = true; | |
return firstSets[symbol]; | |
} | |
var productionsForSymbol = getProductionsForSymbol(symbol); | |
for (var k in productionsForSymbol) { | |
var production = getRHS(productionsForSymbol[k]); | |
for (var i = 0; i < production.length; i++) { | |
var productionSymbol = production[i]; | |
// Epsilon goes to the first set. | |
if (productionSymbol === EPSILON) { | |
first[EPSILON] = true; | |
break; | |
} | |
// Else, the first is a non-terminal, | |
// then first of it goes to first of our symbol | |
// (unless it's an epsilon). | |
var firstOfNonTerminal = firstOf(productionSymbol); | |
// If first non-terminal of the RHS production doesn't | |
// contain epsilon, then just merge its set with ours. | |
if (!firstOfNonTerminal[EPSILON]) { | |
merge(first, firstOfNonTerminal); | |
break; | |
} | |
// Else (we got epsilon in the first non-terminal), | |
// | |
// - merge all except for epsilon | |
// - eliminate this non-terminal and advance to the next symbol | |
// (i.e. don't break this loop) | |
merge(first, firstOfNonTerminal, [EPSILON]); | |
// don't break, go to the next `productionSymbol`. | |
} | |
} | |
return first; | |
} | |
/** | |
* We have the following data structure for our grammars: | |
* | |
* var grammar = { | |
* 1: 'S -> F', | |
* 2: 'S -> (S + F)', | |
* 3: 'F -> a', | |
* }; | |
* | |
* Given symbol `S`, the function returns `S -> F`, | |
* and `S -> (S + F)` productions. | |
*/ | |
function getProductionsForSymbol(symbol) { | |
var productionsForSymbol = {}; | |
for (var k in grammar) { | |
if (grammar[k][0] === symbol) { | |
productionsForSymbol[k] = grammar[k]; | |
} | |
} | |
return productionsForSymbol; | |
} | |
/** | |
* Given production `S -> F`, returns `S`. | |
*/ | |
function getLHS(production) { | |
return production.split('->')[0].replace(/\s+/g, ''); | |
} | |
/** | |
* Given production `S -> F`, returns `F`. | |
*/ | |
function getRHS(production) { | |
return production.split('->')[1].replace(/\s+/g, ''); | |
} | |
/** | |
* Rules for Follow Sets | |
* | |
* - First put $ (the end of input marker) in Follow(S) (S is the start symbol) | |
* - If there is a production A → aBb, (where a can be a whole string) | |
* then everything in FIRST(b) except for ε is placed in FOLLOW(B). | |
* - If there is a production A → aB, then everything in | |
* FOLLOW(A) is in FOLLOW(B) | |
* - If there is a production A → aBb, where FIRST(b) contains ε, | |
* then everything in FOLLOW(A) is in FOLLOW(B) | |
*/ | |
function buildFollowSets(grammar) { | |
followSets = {}; | |
buildSet(followOf); | |
} | |
function followOf(symbol) { | |
// If was already calculated from some previous run. | |
if (followSets[symbol]) { | |
return followSets[symbol]; | |
} | |
// Else init and calculate. | |
var follow = followSets[symbol] = {}; | |
// Start symbol always contain `$` in its follow set. | |
if (symbol === START_SYMBOL) { | |
follow['$'] = true; | |
} | |
// We need to analyze all productions where our | |
// symbol is used (i.e. where it appears on RHS). | |
var productionsWithSymbol = getProductionsWithSymbol(symbol); | |
for (var k in productionsWithSymbol) { | |
var production = productionsWithSymbol[k]; | |
var RHS = getRHS(production); | |
// Get the follow symbol of our symbol. | |
var symbolIndex = RHS.indexOf(symbol); | |
var followIndex = symbolIndex + 1; | |
// We need to get the following symbol, which can be `$` or | |
// may contain epsilon in its first set. If it contains epsilon, then | |
// we should take the next following symbol: `A -> aBCD`: if `C` (the | |
// follow of `B`) can be epsilon, we should consider first of `D` as well | |
// as the follow of `B`. | |
while (true) { | |
if (followIndex === RHS.length) { // "$" | |
var LHS = getLHS(production); | |
if (LHS !== symbol) { // To avoid cases like: B -> aB | |
merge(follow, followOf(LHS)); | |
} | |
break; | |
} | |
var followSymbol = RHS[followIndex]; | |
// Follow of our symbol is anything in the first of the following symbol: | |
// followOf(symbol) is firstOf(followSymbol), except for epsilon. | |
var firstOfFollow = firstOf(followSymbol); | |
// If there is no epsilon, just merge. | |
if (!firstOfFollow[EPSILON]) { | |
merge(follow, firstOfFollow); | |
break; | |
} | |
merge(follow, firstOfFollow, [EPSILON]); | |
followIndex++; | |
} | |
} | |
return follow; | |
} | |
function buildSet(builder) { | |
for (var k in grammar) { | |
builder(grammar[k][0]); | |
} | |
} | |
/** | |
* Finds productions where a non-terminal is used. E.g., for the | |
* symbol `S` it finds production `(S + F)`, and for the symbol `F` | |
* it finds productions `F` and `(S + F)`. | |
*/ | |
function getProductionsWithSymbol(symbol) { | |
var productionsWithSymbol = {}; | |
for (var k in grammar) { | |
var production = grammar[k]; | |
var RHS = getRHS(production); | |
if (RHS.indexOf(symbol) !== -1) { | |
productionsWithSymbol[k] = production; | |
} | |
} | |
return productionsWithSymbol; | |
} | |
function isTerminal(symbol) { | |
return !/[A-Z]/.test(symbol); | |
} | |
function merge(to, from, exclude) { | |
exclude || (exclude = []); | |
for (var k in from) { | |
if (exclude.indexOf(k) === -1) { | |
to[k] = from[k]; | |
} | |
} | |
} | |
function printGrammar(grammar) { | |
console.log('Grammar:\n'); | |
for (var k in grammar) { | |
console.log(' ', grammar[k]); | |
} | |
console.log(''); | |
} | |
function printSet(name, set) { | |
console.log(name + ': \n'); | |
for (var k in set) { | |
console.log(' ', k, ':', Object.keys(set[k])); | |
} | |
console.log(''); | |
} | |
// Testing | |
// -------------------------------------------------------------------------- | |
// Example 1 of a simple grammar, generates: a, or (a + a), etc. | |
// -------------------------------------------------------------------------- | |
var grammar = { | |
1: 'S -> F', | |
2: 'S -> (S + F)', | |
3: 'F -> a', | |
}; | |
var START_SYMBOL = 'S'; | |
printGrammar(grammar); | |
buildFirstSets(grammar); | |
printSet('First sets', firstSets); | |
buildFollowSets(grammar); | |
printSet('Follow sets', followSets); | |
// Results: | |
// Grammar: | |
// | |
// S -> F | |
// S -> (S + F) | |
// F -> a | |
// | |
// First sets: | |
// | |
// S : [ 'a', '(' ] | |
// F : [ 'a' ] | |
// a : [ 'a' ] | |
// ( : [ '(' ] | |
// | |
// Follow sets: | |
// | |
// S : [ '$', '+' ] | |
// F : [ '$', '+', ')' ] | |
// -------------------------------------------------------------------------- | |
// Example 2 of a "calculator" grammar (with removed left recursion, which | |
// is replaced with a right recursion and epsilons), it generates language | |
// for e.g. (a + a) * a. | |
// -------------------------------------------------------------------------- | |
var grammar = { | |
1: 'E -> TX', | |
2: 'X -> +TX', | |
3: 'X -> ε', | |
4: 'T -> FY', | |
5: 'Y -> *FY', | |
6: 'Y -> ε', | |
7: 'F -> a', | |
8: 'F -> (E)', | |
}; | |
var START_SYMBOL = 'E'; | |
printGrammar(grammar); | |
buildFirstSets(grammar); | |
printSet('First sets', firstSets); | |
buildFollowSets(grammar); | |
printSet('Follow sets', followSets); | |
// Results: | |
// Grammar: | |
// | |
// E -> TX | |
// X -> +TX | |
// X -> ε | |
// T -> FY | |
// Y -> *FY | |
// Y -> ε | |
// F -> a | |
// F -> (E) | |
// | |
// First sets: | |
// | |
// E : [ 'a', '(' ] | |
// T : [ 'a', '(' ] | |
// F : [ 'a', '(' ] | |
// a : [ 'a' ] | |
// ( : [ '(' ] | |
// X : [ '+', 'ε' ] | |
// + : [ '+' ] | |
// Y : [ '*', 'ε' ] | |
// * : [ '*' ] | |
// | |
// Follow sets: | |
// | |
// E : [ '$', ')' ] | |
// X : [ '$', ')' ] | |
// T : [ '+', '$', ')' ] | |
// Y : [ '+', '$', ')' ] | |
// F : [ '*', '+', '$', ')' ] |
Hi Dmitry,
Very useful post on LL parsers. Thanks !
Have a question about first-sets:
If instead we have a
- non-terminal on the right hand side, like e.g. in
A -> BC
, then in order- to calculate first set of
A
, we should calculate first set ofB
, and- then merge it to
A
.
That sentence about calculating the first set of B and merging it into A confused me a bit. It seems to not line up with the more detailed explanation in the Rules for First Sets - maybe it should say we have to calculate the first set of BC
and then
give the more detailed rules from the Rules for First Sets:
i.e
`/* - First(BC) is either
-
- First(B) (if First(B) doesn't contain ε)
-
- OR (if First(B) does contain ε) then First (BC) is everything
- in First(B) <except for ε > as well as everything in First(C)
-
- If First(B) First(C) all contain ε then add ε
- to First(BC) as well.
*/`
Dont mean to be critical - just want to check my understanding.
Cheers,
Kieran
(sorry, I didn't receive any notifications about these questions)
You can test fully working implementation of the First/Follow/Predict sets generation in the Syntax tool (the sets generator lives here).
FIRST(S) = FIRST(A) -> a | b | FIRST(C) => {a, b, ε}, because FIRST(a) => {a}, FIRST(b) => {b}, FIRST(C) => {a, b, ε}. Am I wrong?
Yes, it should include ε
(might be a bug in this gist, the correct implementation again can be found in the Syntax tool).
/* test.g */
%%
S
: A c
| B b
| S C a b
;
A
: a
| b B
| C
;
B
: A
| C
| d
;
C
: a S
| C d B d
| A B
| /* ε */
;
To get the sets:
syntax-cli --grammar ~/test.g --mode lalr1 -s first
Result for First sets:
┌────────┬────────────┐
│ Symbol │ First set │
├────────┼────────────┤
│ S │ a, b, c, d │
├────────┼────────────┤
│ A │ a, b, ε │
├────────┼────────────┤
│ a │ a │
├────────┼────────────┤
│ b │ b │
├────────┼────────────┤
│ C │ a, b, ε │
├────────┼────────────┤
│ c │ c │
├────────┼────────────┤
│ B │ a, b, ε, d │
├────────┼────────────┤
│ d │ d │
└────────┴────────────┘
maybe it should say we have to calculate the first set of
BC
and then
Thanks, and yes, absolutely correct, it should be "first of RHS", i.e. FIRST(BC)
. See fully working implementation in the Syntax tool, here.
i want it in java code ? Do you have it please?
i just easier to learn those concepts from a clean code like this .
Thank you
@DmitrySoshnikov
I think there might be a bug?
Consider the case
start symbol = E
E -> T X
T -> ( E ) | a Y
X -> + E | ε
Y -> * T E & | ε
The result of follow(E)
and follow(X)
should be
E = { $, ), follow(X), & } = { $, ), & }
X = { follow(E) } = { $, ), & }
As the code first trying to solve follow(E)
. To deal with this, it needs to get follow(X)
, but at this time, followSets[E] = { $, ) }
, and the symbol &
is not parsed yet. And it directly call follow(X)
, which is incorrect.
Intuitively, I am trying to solve this problem after watching this tutorial. After I wrote some code, I met this problem, so I dig into your code, yet I still met this problem.
To solve with this problem, it appears that we have to deal with a complex graph problem in order to figure these relationship.
Any thought on this? Correct me if I'm wrong
Thanks.
@qq52184962: yeah, this is a mutual-recursive case for calculating Follow sets. I've checked, the Syntax tool also has this bug, and seems it's the issue #73.
We probably need to patch somehow a set, whenever a depending set is updated.
To check your example in Syntax tool:
File ~/grammar.g
%%
E
: T X
;
T
: '(' E ')'
| 'a' Y
;
X
: '+' E
| /* ε */
;
Y
: '*' T E '&'
| /* ε */
;
Command:
syntax-cli -g ~/grammar.g -m lalr1 -s follow
Follow set:
┌─────────┬────────────────────────────┐
│ Symbol │ Follow set │
├─────────┼────────────────────────────┤
│ $accept │ │
├─────────┼────────────────────────────┤
│ E │ $, ')', '&' │
├─────────┼────────────────────────────┤
│ X │ $, ')' │
├─────────┼────────────────────────────┤
│ T │ '+', $, ')', '&', '(', 'a' │
├─────────┼────────────────────────────┤
│ Y │ '+', $, ')', '&', '(', 'a' │
└─────────┴────────────────────────────┘
So I think the solution is to split the follow algorithm into to parts. First only merge in the first sets and build the graph for the follow relation and then in a second pass propagate the follow sets. I tested this here: https://gist.github.com/Islidius/e036a9f261b18f9132cf26ef5a9a06c9
This solves the problem for all circular cases like:
grammar = [
'E -> aT',
'E -> ε',
'T -> bE',
'T -> ε',
'S -> Ec'
];
which generates now:
FOLLOW(E) = ['c']
FOLLOW(T) = ['c']
FOLLOW(S) = ['$']
I am wondering how the recursion in FirstOf terminates in case of the following LR grammar?
S-> A B C
A -> a
B -> B b C
B -> #
C -> c A
When trying to find the FIRST for B, the non-terminal B is again encountered on the RHS and therefore the recursive call will not terminate, I think.
Am I overlooking something?
Thumbs Up mate, the cleanest code i have seen on the web