Created
July 14, 2016 07:53
-
-
Save Hironsan/69d3c4721b81d34da93ce3360d6e22f8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.examples.tutorials.mnist import input_data | |
import tensorflow as tf | |
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) | |
sess = tf.InteractiveSession() | |
x = tf.placeholder(tf.float32, shape=[None, 784]) | |
y_ = tf.placeholder(tf.float32, shape=[None, 10]) | |
W = tf.Variable(tf.zeros([784,10])) | |
b = tf.Variable(tf.zeros([10])) | |
sess.run(tf.initialize_all_variables()) | |
y = tf.nn.softmax(tf.matmul(x,W) + b) | |
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
# Train the model | |
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) | |
for i in range(1000): | |
batch = mnist.train.next_batch(50) | |
train_step.run(feed_dict={x: batch[0], y_: batch[1]}) | |
# Evaluate the model | |
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment