Skip to content

Instantly share code, notes, and snippets.

@Hironsan
Created July 14, 2016 07:53
Show Gist options
  • Save Hironsan/69d3c4721b81d34da93ce3360d6e22f8 to your computer and use it in GitHub Desktop.
Save Hironsan/69d3c4721b81d34da93ce3360d6e22f8 to your computer and use it in GitHub Desktop.
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.initialize_all_variables())
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Train the model
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
for i in range(1000):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
# Evaluate the model
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment