-
-
Save Huta2018/2ed551430943648b99a2c60f243f45bb to your computer and use it in GitHub Desktop.
Simple force directed graph drawing algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Force-Directed Graph Drawing | |
import Tkinter | |
import random | |
import math | |
# d = [ | |
# [.0, .3, .3, .0], | |
# [.3, .0, .3, .0], | |
# [.3, .3, .0, .3], | |
# [.0, .0, .3, .0] | |
# ] | |
d = [] | |
nrows = 5 | |
ncols = 5 | |
for i in xrange(nrows * ncols): | |
ci = i % ncols | |
ri = i / ncols | |
dr = [] | |
for j in xrange(nrows * ncols): | |
cj = j % ncols | |
rj = j / ncols | |
if ((ci == cj) and (ri == rj - 1 or ri == rj + 1) | |
or (ri == rj and (ci == cj - 1 or ci == cj + 1))): | |
dr.append(.1) | |
else: | |
dr.append(.0) | |
d.append(dr) | |
# mass | |
alpha = 1.0 | |
beta = .0001 | |
k = 1.0 | |
#damping | |
eta = .99 | |
delta_t = .01 | |
m = len(d) | |
root = Tkinter.Tk() | |
canvas = Tkinter.Canvas(root, width=500, height=500, background="yellow") | |
canvas.pack() | |
x = [] | |
v = [] | |
ids = [] | |
def move_oval(i): | |
newx = int(x[i][0] * 500) | |
newy = int(x[i][1] * 500) | |
canvas.coords(ids[i], newx - 5, newy - 5, newx + 5, newy + 5) | |
for i in xrange(m): | |
xi = [random.random(), random.random()] | |
x.append(xi) | |
v.append([0.0, 0.0]) | |
id = canvas.create_oval(245, 245, 255, 255, fill="red") | |
ids.append(id) | |
move_oval(i) | |
lids = [] | |
def move_line(id, xi, xj): | |
canvas.coords(id, | |
int(xi[0] * 500), | |
int(xi[1] * 500), | |
int(xj[0] * 500), | |
int(xj[1] * 500)) | |
for i in xrange(m): | |
for j in xrange(m): | |
if d[i][j] != 0: | |
id = canvas.create_line(0, 0, 0, 0) | |
lids.append(id) | |
move_line(id, x[i], x[j]) | |
def Coulomb_force(xi, xj): | |
dx = xj[0] - xi[0] | |
dy = xj[1] - xi[1] | |
ds2 = dx * dx + dy * dy | |
ds = math.sqrt(ds2) | |
ds3 = ds2 * ds | |
if ds3 == 0.0: | |
const = 0 | |
else: | |
const = beta / (ds2 * ds) | |
return [-const * dx, -const * dy] | |
def Hooke_force(xi, xj, dij): | |
dx = xj[0] - xi[0] | |
dy = xj[1] - xi[1] | |
ds = math.sqrt(dx * dx + dy * dy) | |
dl = ds - dij | |
const = k * dl / ds | |
return [const * dx, const * dy] | |
def move(): | |
ekint = [0.0, 0.0] | |
for i in xrange(m): | |
Fx = 0.0 | |
Fy = 0.0 | |
for j in xrange(m): | |
if j == 1: | |
continue | |
dij = d[i][j] | |
Fij = 0.0 | |
if dij == 0.0: | |
Fij = Coulomb_force(x[i], x[j]) | |
else: | |
Fij = Hooke_force(x[i], x[j], dij) | |
Fx += Fij[0] | |
Fy += Fij[1] | |
v[i][0] = (v[i][0] + alpha * Fx * delta_t) * eta | |
v[i][1] = (v[i][1] + alpha * Fy * delta_t) * eta | |
ekint[0] = ekint[0] + alpha * (v[i][0] * v[i][0]) | |
ekint[1] = ekint[1] + alpha * (v[i][1] * v[i][1]) | |
print "total kinetic energy: %lf" % math.sqrt(ekint[0] * ekint[0] + ekint[1] * ekint[1]) | |
for i in xrange(m): | |
x[i][0] += v[i][0] * delta_t | |
x[i][1] += v[i][1] * delta_t | |
move_oval(i) | |
li = 0 | |
for i in xrange(m): | |
for j in xrange(m): | |
if d[i][j] != 0: | |
id = lids[li] | |
move_line(id, x[i], x[j]) | |
li += 1 | |
root.after(1, move) | |
root.after(1, move) | |
root.mainloop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment