Skip to content

Instantly share code, notes, and snippets.

@KMarkert
Created August 15, 2020 16:19
Show Gist options
  • Save KMarkert/236884ad211625890ffd8fcf1a0f5aa4 to your computer and use it in GitHub Desktop.
Save KMarkert/236884ad211625890ffd8fcf1a0f5aa4 to your computer and use it in GitHub Desktop.
using PyCall, Plots, Colors, FileIO;
# import the ee Python module into Julia
# and initialize the EE API
ee = pyimport("ee");
ee.Initialize();
# produce tabular data that can be plotted by data visualization in Julia
# Fetch a Landsat image.
img = ee.Image("LANDSAT/LT05/C01/T1_SR/LT05_034033_20000913");
# define a function to calcuate NDVI from an LT5 image
function ndvi(img)
img.normalizedDifference(["B4","B3"]);
end
# apply function to image
ndvi_img = ndvi(img);
# define a color map to use for visualization
# choose green gradient and convert to hex color code
color_map = map(x -> hex(x,:RRGGBB), cgrad(:Greens_9));
# get a link to the thumbnail NDVI image
thumburl = ndvi_img.getThumbUrl(
# define parameters to visualize image
Dict(
"min" => 0,
"max" => 0.8,
"dimensions" => 1024,
"format" => "png",
"palette" => color_map
)
);
# download the image from the url returned
localpath = download(thumburl);
# load the image into an Array
img = FileIO.load(localpath);
# display the image
plot(img, ticks = nothing, border = :none)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment