-
-
Save MexsonFernandes/ae332b7575b147c206f74971a4089d09 to your computer and use it in GitHub Desktop.
import numpy as np | |
import pandas as pd | |
import sys | |
import json | |
import time | |
from telnetlib import Telnet | |
# Initializing the arrays required to store the data. | |
attention_values = np.array([]) | |
meditation_values = np.array([]) | |
delta_values = np.array([]) | |
theta_values = np.array([]) | |
lowAlpha_values = np.array([]) | |
highAlpha_values = np.array([]) | |
lowBeta_values = np.array([]) | |
highBeta_values = np.array([]) | |
lowGamma_values = np.array([]) | |
highGamma_values = np.array([]) | |
blinkStrength_values = np.array([]) | |
time_array = np.array([]) | |
tn=Telnet('localhost',13854); | |
start=time.clock(); | |
i=0; | |
tn.write('{"enableRawOutput": true, "format": "Json"}'); | |
outfile="null"; | |
if len(sys.argv)>1: | |
outfile=sys.argv[len(sys.argv)-1]; | |
outfptr=open(outfile,'w'); | |
eSenseDict={'attention':0, 'meditation':0}; | |
waveDict={'lowGamma':0, 'highGamma':0, 'highAlpha':0, 'delta':0, 'highBeta':0, 'lowAlpha':0, 'lowBeta':0, 'theta':0}; | |
signalLevel=0; | |
while time.clock() - start < 30: | |
blinkStrength=0; | |
line=tn.read_until('\r'); | |
if len(line) > 20: | |
timediff=time.clock()-start; | |
dict=json.loads(str(line)); | |
if "poorSignalLevel" in dict: | |
signalLevel=dict['poorSignalLevel']; | |
if "blinkStrength" in dict: | |
blinkStrength=dict['blinkStrength']; | |
if "eegPower" in dict: | |
waveDict=dict['eegPower']; | |
eSenseDict=dict['eSense']; | |
outputstr=str(timediff)+ ", "+ str(signalLevel)+", "+str(blinkStrength)+", " + str(eSenseDict['attention']) + ", " + str(eSenseDict['meditation']) + ", "+str(waveDict['lowGamma'])+", " + str(waveDict['highGamma'])+", "+ str(waveDict['highAlpha'])+", "+str(waveDict['delta'])+", "+ str(waveDict['highBeta'])+", "+str(waveDict['lowAlpha'])+", "+str(waveDict['lowBeta'])+ ", "+str(waveDict['theta']); | |
time_array = np.append(time_array, [timediff]); | |
blinkStrength_values = np.append(blinkStrength_values, [blinkStrength]); | |
lowGamma_values = np.append(lowGamma_values, [waveDict['lowGamma']]); | |
highGamma_values = np.append(highGamma_values, [waveDict['highGamma']]); | |
highAlpha_values = np.append(highAlpha_values, [waveDict['highAlpha']]); | |
delta_values = np.append(delta_values, [waveDict['delta']]); | |
lowBeta_values = np.append(lowBeta_values, [waveDict['lowBeta']]); | |
highBeta_values = np.append(highBeta_values, [waveDict['highBeta']]); | |
theta_values = np.append(theta_values, [waveDict['theta']]); | |
lowAlpha_values = np.append(lowAlpha_values, [waveDict['lowAlpha']]); | |
attention_values = np.append(attention_values, [eSenseDict['attention']]); | |
meditation_values = np.append(meditation_values, [eSenseDict['meditation']]); | |
print (outputstr); | |
if outfile!="null": | |
outfptr.write(outputstr+"\n"); | |
person_name = input('Enter the name of the person: ') | |
blink_label = input('Enter left or right eye blink(1 for left, 2 for right): ') | |
time_starting = input('When does TGC start: ') | |
lefty_righty = input('Is the person left-handed or right-handed: ') | |
time_blinking = input('The time of the blink: ') | |
# Data Recorded for a single person | |
data_row = pd.DataFrame({'Name': person_name, 'attention': [attention_values], 'meditation': [meditation_values], 'delta': [delta_values], 'theta': [theta_values], 'lowAlpha': [lowAlpha_values], 'highAlpha': [highAlpha_values], 'lowBeta': [lowBeta_values], 'highBeta': [highBeta_values], | |
'lowGamma':[lowGamma_values] , 'highGamma': [highGamma_values], 'blinkStrength': [blinkStrength_values], 'time': [time_array], 'LOR': blink_label}) | |
# Reading the data stored till now | |
dataset = pd.read_csv('data_eeg.csv') | |
from numpy import nan as Nan | |
dataset = dataset.append(pd.Series([blink_label, person_name, [attention_values], [blinkStrength_values], [delta_values] | |
, [highAlpha_values], [highBeta_values], [highGamma_values], [lowAlpha_values], [lowBeta_values], [lowGamma_values], [meditation_values], | |
[theta_values], [time_array], time_starting, lefty_righty, time_blinking], index=['LOR', 'Name', 'attention', 'blinkStrength', 'delta', 'highAlpha', 'highBeta', 'highGamma', 'lowAlpha', 'lowBeta', 'lowGamma', 'meditation', 'theta', 'time', 'time_start', 'LTYRTY', 'time_blink']), ignore_index = True) | |
#Appending and storing the data in the same csv | |
#dataset.append(data_row) | |
dataset.to_csv('data_eeg.csv') | |
tn.close(); | |
#outfptr.close(); |
@kesavsivakumar those are the frequency measurements which return data at 1 Hz. You want to look at the raw data to get the higher sampling rate.
@kesavsivakumar those are the frequency measurements which return data at 1 Hz. You want to look at the raw data to get the higher sampling rate.
@gmierz How to extract the raw data , lately i have been trying to extract raw eeg data using java script (node-think-gear-socket) but I feel like ,I always lead to a dead end .
@kesavsivakumar check out the code I wrote here: https://github.com/gmierz/mindwave-lsl/blob/master/mindwavelsl/outlet.py#L19
There's some examples of how you can use this in test_*.py at the root of the repo.
When you create the MindwaveLSL object, initialize it with run_lsl=False
so you can pull the data without needing the LSL bits.
You'll want to use the make_sample
function, and then check the data at index 8 of the sample, that will be the raw eeg value. You can see the ordering of the fields here: https://github.com/gmierz/mindwave-lsl/blob/master/mindwavelsl/constants.py#L17
@gmierz Thanks mate!
Hey, I have questions to ask as i am noob in python (have some knowledge) as i am making fully functional car with raspberry pi which will have rc ,egg, as well internet, (auto pilot) anticrash so lets move to questions no 1) will i have to change the script for eeg control( mean to put a value )2) will there is any errors come when i will run 3 python script simultaneously 3) how to make python script for obstrical avoidance (as i did nt find the way no where )
It should be
tn.write(str.encode('{"enableRawOutput": true, "format": "Json"}'))
@urmi2927 change '\r'
to b'\r'
can you explain this line please
tn=Telnet('localhost',13854);
That's the telnet connection used to communicate data between the device and your computer. I suggest using this package so you don't get bogged down by these details: https://github.com/gmierz/mindwave-lsl
I tried this link thank you for shearing it, but i still not understand how can it work and how I can connect this app with my headset? is there any information should I add it? i hope someone help me in this Issue
You need to get the Thinkgear connector working first, then that'll provide you with a host and port to use in the package above (see the help section of the command).
WHEN i trien the modul I get an error in related with pyxdf
is it possible to get raw eeg data
Yes, but you need to make sure you do a write like this to enable it: https://github.com/gmierz/mindwave-lsl/blob/21827fe80f034e0a1d6b5da6b9165c6d0574ac23/test_mouse_movements.py#L19
is it possible to enable raw eeg data from mindwave neurosky 1, the headset with RF dongle connecting through usb port? and if how can i do that?
Yes, but you need to make sure you do a write like this to enable it: https://github.com/gmierz/mindwave-lsl/blob/21827fe80f034e0a1d6b5da6b9165c6d0574ac23/test_mouse_movements.py#L19
but I tried it is not possible to get raw EEG data
I'm using another single electrode FT$S mind link EEG Headband, is it any method to receive live raw EEG data from it
How to increase the samples per second ? As of this code i m hardly getting 1 sample per second . I need around 250+ samples per second .