Manjaro Linux Budgie 18.0.4 (dual boot with windows)
I also can use this input method on Emacs like Emacs keybinding.
- キーボード- 英語 (US)
- MOZC
// TestDataSetIterator.java | |
// ver 1.0.0-beta | |
import org.datavec.api.records.reader.SequenceRecordReader; | |
import org.datavec.api.records.reader.impl.csv.CSVSequenceRecordReader; | |
import org.datavec.api.split.FileSplit; | |
import org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator; | |
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; | |
import java.io.File; | |
import java.io.IOException; |
// TestDataSetIterator.java | |
// ver 1.0.0-beta | |
import org.datavec.api.records.reader.SequenceRecordReader; | |
import org.datavec.api.records.reader.impl.collection.CollectionSequenceRecordReader; | |
import org.datavec.api.writable.IntWritable; | |
import org.datavec.api.writable.Writable; | |
import org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator; | |
import org.nd4j.linalg.dataset.DataSet; | |
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; |
@misc{1605.06069, | |
Author = {Iulian Vlad Serban and Alessandro Sordoni and Ryan Lowe and Laurent Charlin and Joelle Pineau and Aaron Courville and Yoshua Bengio}, | |
Title = {A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues}, | |
Year = {2016}, | |
Eprint = {arXiv:1605.06069}, | |
} | |
@misc{1507.02221, | |
Author = {Alessandro Sordoni and Yoshua Bengio and Hossein Vahabi and Christina Lioma and Jakob G. Simonsen and Jian-Yun Nie}, | |
Title = {A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion}, | |
Year = {2015}, |
;; -*- mode: emacs-lisp -*- | |
;; This file is loaded by Spacemacs at startup. | |
;; It must be stored in your home directory. | |
(defun dotspacemacs/layers () | |
"Configuration Layers declaration. | |
You should not put any user code in this function besides modifying the variable | |
values." | |
(setq-default | |
;; Base distribution to use. This is a layer contained in the directory |
acpi 1.7-2 | |
acpid 2.0.31-1 | |
adwaita-icon-theme 3.32.0-1 | |
alsa-firmware 1.0.29-2 | |
alsa-utils 1.1.9-1 | |
arandr 0.1.10-3 | |
autoconf 2.69-5 | |
automake 1.16.1-1 | |
avahi 0.7+18+g1b5f401-2 | |
b43-fwcutter 019-2 |
<template> | |
<v-container> | |
<v-btn to="/add" fixed dark fab bottom right color="pink"> | |
<v-icon>mdi-plus</v-icon> | |
</v-btn> | |
<v-layout wrap> | |
<v-flex md-12> | |
<div v-if="sortedTodos.length === 0" class="headline text-center my-12"> | |
<v-icon>mdi-anchor</v-icon> | |
<span class="pl-2 pr-2">[タスク]は空です</span> |
import tensorflow as tf | |
import tensorflow_probability as tfp | |
import tensorflow_probability.python.bijectors as tfb | |
import tensorflow_probability.python.distributions as tfd | |
def trainable_lu_factorization(event_size, | |
trainable=True, | |
batch_shape=(), | |
seed=None, |
import tensorflow as tf | |
import tensorflow_probability as tfp | |
import tensorflow_probability.python.bijectors as tfb | |
import tensorflow_probability.python.distributions as tfd | |
def main(): | |
random_matrix = tf.Variable(tf.random.uniform(shape=[2, 28, 28]), | |
trainable=True, | |
name='weights') |
;; -*- mode: emacs-lisp -*- | |
;; it's a function for lsp connection in docker | |
;; ---------- | |
;; (lsp-register-client | |
;; (make-lsp-client :new-connection (lsp-tramp-connection "pyls") | |
;; :major-modes '(python-mode) | |
;; :remote? t | |
;; :server-id 'pyls-remote)) | |
;; ---------- |