Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.

################################################################ | |
# DOWNLOAD ENTIRE FOLDER STRUCTURE FROM DROPBOX TO LOCAL DRIVE # | |
################################################################ | |
# Instructions: | |
# (1) install dropbox API using pip | |
# > pip install dropbox | |
# (2) Create application to make requests to the Dropbox API | |
# - Go to: https://dropbox.com/developers/apps |
import torch | |
from torch import LongTensor | |
from torch.nn import Embedding, LSTM | |
from torch.autograd import Variable | |
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence | |
## We want to run LSTM on a batch of 3 character sequences ['long_str', 'tiny', 'medium'] | |
# | |
# Step 1: Construct Vocabulary | |
# Step 2: Load indexed data (list of instances, where each instance is list of character indices) |
class TemporalBlock(tf.layers.Layer): | |
def __init__(self, n_outputs, kernel_size, strides, dilation_rate, dropout=0.2, | |
trainable=True, name=None, dtype=None, | |
activity_regularizer=None, **kwargs): | |
super(TemporalBlock, self).__init__( | |
trainable=trainable, dtype=dtype, | |
activity_regularizer=activity_regularizer, | |
name=name, **kwargs | |
) | |
self.dropout = dropout |
library(tidyverse) | |
# Data is downloaded from here: | |
# https://www.kaggle.com/c/digit-recognizer | |
kaggle_data <- read_csv("~/Downloads/train.csv") | |
pixels_gathered <- kaggle_data %>% | |
mutate(instance = row_number()) %>% | |
gather(pixel, value, -label, -instance) %>% | |
extract(pixel, "pixel", "(\\d+)", convert = TRUE) |
import numpy as np | |
from scipy.optimize import curve_fit | |
import scipy as sy | |
import matplotlib.pyplot as plt | |
d = np.array([75, 80, 90, 95, 100, 105, 110, 115, 120, 125], dtype=float) | |
p1 = np.array([6, 13, 25, 29, 29, 29, 30, 29, 30, 30], dtype=float) / 30. # scale to 0..1 | |
# psychometric function | |
def pf(x, alpha, beta): |
# wavfile.py (Enhanced) | |
# Date: 20190213_2328 Joseph Ernest | |
# | |
# URL: https://gist.github.com/josephernest/3f22c5ed5dabf1815f16efa8fa53d476 | |
# Source: scipy/io/wavfile.py | |
# | |
# Added: | |
# * read: also returns bitrate, cue markers + cue marker labels (sorted), loops, pitch | |
# See https://web.archive.org/web/20141226210234/http://www.sonicspot.com/guide/wavefiles.html#labl | |
# * read: 24 bit & 32 bit IEEE files support (inspired from wavio_weckesser.py from Warren Weckesser) |
This is a guide for aligning images.
See the full Advanced Markdown doc for more tips and tricks