Skip to content

Instantly share code, notes, and snippets.

@sayakpaul
sayakpaul / grade_images_with_gemini.py
Last active March 19, 2025 15:58
Shows how to use Gemini Flash 2.0 to grade images on multiple aspects like accuracy to prompt, emotional and thematic response, etc.
from google import genai
from google.genai import types
import typing_extensions as typing
from PIL import Image
import requests
import io
import json
import os
# /// script
# dependencies = [
# "atproto"
# ]
# ///
from atproto import Client
import getpass
import time
@sayakpaul
sayakpaul / aot_compile_with_int8_quant.py
Last active February 2, 2025 17:54
Shows how to AoT compile the Flux.1 Dev Transformer with int8 quant and perform inference.
import torch
from diffusers import FluxTransformer2DModel
import torch.utils.benchmark as benchmark
from torchao.quantization import quantize_, int8_weight_only
from torchao.utils import unwrap_tensor_subclass
import torch._inductor
torch._inductor.config.mixed_mm_choice = "triton"
@linoytsaban
linoytsaban / flux_with_cfg
Last active December 9, 2024 06:26
Flux with CFG and negative prompts
# download FluxCFGPipline
!wget https://raw.githubusercontent.com/linoytsaban/diffusers/refs/heads/dreambooth-lora-flux-exploration/examples/community/pipeline_flux_with_cfg.py
# load pipeline
import diffusers
import torch
from pipeline_flux_with_cfg import FluxCFGPipeline
pipe = FluxCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16)
@sayakpaul
sayakpaul / run_flux_with_limited_resources.md
Last active February 23, 2025 07:10
This document enlists resources that show how to run Black Forest Lab's Flux with Diffusers under limited resources.
@pcuenca
pcuenca / openelm-coreml.py
Created April 30, 2024 09:55
Convert OpenELM to Core ML (float32)
import argparse
import numpy as np
import torch
import torch.nn as nn
import coremltools as ct
from transformers import AutoTokenizer, AutoModelForCausalLM
# When using float16, all predicted logits are 0. To be debugged.
compute_precision = ct.precision.FLOAT32
compute_units = ct.ComputeUnit.CPU_ONLY
@Artefact2
Artefact2 / README.md
Last active May 11, 2025 00:58
GGUF quantizations overview
@takanotaiga
takanotaiga / i2t.py
Last active September 26, 2024 16:51
i2t ros2
# Copyright 2023 Taiga Takano
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http:#www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
@eavae
eavae / convert_diffusers_lora_to_sd_webui.py
Created August 23, 2023 07:45
A script help you convert diffusers lora to sd webui format
from pathlib import Path
from diffusers import StableDiffusionXLPipeline
import torch
from safetensors.torch import save_file
# text_encoder.text_model.encoder.layers.0.self_attn.k_proj.lora_linear_layer.down.weight
# lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight
# 1. text_encoder -> lora_te, text_encoder_2 -> lora_te2
# 2. map
# 3. .weight -> 2 .alpha -> 1 and replace . -> _
import json
import pickle
import struct
import zipfile
import numpy as np
from sentencepiece import SentencePieceProcessor
def rms_norm(x): return (x / np.sqrt(np.square(x).mean(-1, keepdims=True) + 1e-6))
def softmax(x): return (np.exp(x - np.max(x, axis=-1, keepdims=True))) / np.sum((np.exp(x - np.max(x, axis=-1, keepdims=True))), axis=-1, keepdims = True)