Skip to content

Instantly share code, notes, and snippets.

@Oceanswave
Last active July 5, 2024 02:39
Show Gist options
  • Save Oceanswave/32da596e8bb10c928f6c69c889c3c130 to your computer and use it in GitHub Desktop.
Save Oceanswave/32da596e8bb10c928f6c69c889c3c130 to your computer and use it in GitHub Desktop.
Streaming Transcriber w/ Whisper v3
#! python3.7
import argparse
import io
import os
import torch
from transformers import pipeline
import speech_recognition as sr
from datetime import datetime, timedelta
from queue import Queue
from time import sleep
from sys import platform
from scipy.io import wavfile
from rich.progress import Progress, TimeElapsedColumn, BarColumn, TextColumn
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-name",
required=False,
default="openai/whisper-large-v3",
type=str,
help="Name of the pretrained model/ checkpoint to perform ASR. (default: openai/whisper-large-v3)",
)
parser.add_argument(
"--energy_threshold",
default=400,
help="Energy level for mic to detect.",
type=int,
)
parser.add_argument(
"--record_timeout",
default=2,
help="How real time the recording is in seconds.",
type=float,
)
parser.add_argument(
"--phrase_timeout",
default=4,
help="How much empty space between recordings before we "
"consider it a new line in the transcription.",
type=float,
)
parser.add_argument(
"--language",
required=False,
type=str,
default="None",
help='Language of the input audio. (default: "None" (Whisper auto-detects the language))',
)
parser.add_argument(
"--batch-size",
required=False,
type=int,
default=24,
help="Number of parallel batches you want to compute. Reduce if you face OOMs. (default: 24)",
)
parser.add_argument(
"--task",
required=False,
default="transcribe",
type=str,
choices=["transcribe", "translate"],
help="Task to perform: transcribe or translate to another language. (default: transcribe)",
)
parser.add_argument(
"--timestamp",
required=False,
type=str,
default="chunk",
choices=["chunk", "word"],
help="Whisper supports both chunked as well as word level timestamps. (default: chunk)",
)
parser.add_argument(
"--device-id",
required=False,
default="mps",
type=str,
help='Device ID for your GPU. Just pass the device number when using CUDA, or "mps" for Macs with Apple Silicon. (default: "0")',
)
if "linux" in platform:
parser.add_argument(
"--default_microphone",
default="pulse",
help="Default microphone name for SpeechRecognition. "
"Run this with 'list' to view available Microphones.",
type=str,
)
args = parser.parse_args()
# The last time a recording was retrieved from the queue.
phrase_time = None
# Current raw audio bytes.
last_sample = bytes()
# Thread safe Queue for passing data from the threaded recording callback.
data_queue = Queue()
# We use SpeechRecognizer to record our audio because it has a nice feature where it can detect when speech ends.
recorder = sr.Recognizer()
recorder.energy_threshold = args.energy_threshold
# Definitely do this, dynamic energy compensation lowers the energy threshold dramatically to a point where the SpeechRecognizer never stops recording.
recorder.dynamic_energy_threshold = False
# Load / Download model
pipe = pipeline(
"automatic-speech-recognition",
model=args.model_name,
torch_dtype=torch.float16,
device="mps" if args.device_id == "mps" else f"cuda:{args.device_id}",
model_kwargs={"use_flash_attention_2": False},
)
sampling_rate = pipe.feature_extractor.sampling_rate
ts = "word" if args.timestamp == "word" else True
language = None if args.language == "None" else args.language
# Important for linux users.
# Prevents permanent application hang and crash by using the wrong Microphone
if "linux" in platform:
mic_name = args.default_microphone
if not mic_name or mic_name == "list":
print("Available microphone devices are: ")
for index, name in enumerate(sr.Microphone.list_microphone_names()):
print(f'Microphone with name "{name}" found')
return
else:
for index, name in enumerate(sr.Microphone.list_microphone_names()):
if mic_name in name:
source = sr.Microphone(
sample_rate=sampling_rate, device_index=index
)
break
else:
source = sr.Microphone(sample_rate=sampling_rate)
record_timeout = args.record_timeout
phrase_timeout = args.phrase_timeout
transcription = [""]
with source:
recorder.adjust_for_ambient_noise(source)
def record_callback(_, audio: sr.AudioData) -> None:
"""
Threaded callback function to receive audio data when recordings finish.
audio: An AudioData containing the recorded bytes.
"""
# Grab the raw bytes and push it into the thread safe queue.
data = audio.get_raw_data()
data_queue.put(data)
# Create a background thread that will pass us raw audio bytes.
# We could do this manually but SpeechRecognizer provides a nice helper.
recorder.listen_in_background(
source, record_callback, phrase_time_limit=record_timeout
)
# Cue the user that we're ready to go.
print("Model loaded.\n")
while True:
try:
now = datetime.utcnow()
# Pull raw recorded audio from the queue.
if not data_queue.empty():
phrase_complete = False
# If enough time has passed between recordings, consider the phrase complete.
# Clear the current working audio buffer to start over with the new data.
if phrase_time and now - phrase_time > timedelta(
seconds=phrase_timeout
):
last_sample = bytes()
phrase_complete = True
# This is the last time we received new audio data from the queue.
phrase_time = now
# Concatenate our current audio data with the latest audio data.
while not data_queue.empty():
data = data_queue.get()
last_sample += data
# Use AudioData to convert the raw data to wav data.
audio_data = sr.AudioData(
last_sample, source.SAMPLE_RATE, source.SAMPLE_WIDTH
)
wav_data = io.BytesIO(audio_data.get_wav_data())
# Convert the wav data to a numpy ndarray
sample_rate, audio_array = wavfile.read(wav_data)
# audio_array is the numpy ndarray containing the audio data
# Read the transcription.
with Progress(
TextColumn("🤗 [progress.description]{task.description}"),
BarColumn(style="yellow1", pulse_style="white"),
TimeElapsedColumn(),
) as progress:
progress.add_task("[yellow]Transcribing...", total=None)
outputs = pipe(
audio_array,
chunk_length_s=30,
batch_size=args.batch_size,
generate_kwargs={"task": args.task, "language": language},
return_timestamps=ts,
)
# result = audio_model.transcribe(temp_file, fp16=torch.cuda.is_available())
text = outputs["text"].strip()
# If we detected a pause between recordings, add a new item to our transcription.
# Otherwise edit the existing one.
if phrase_complete:
transcription.append(text)
else:
transcription[-1] = text
# Clear the console to reprint the updated transcription.
os.system("cls" if os.name == "nt" else "clear")
for line in transcription:
print(line)
# Flush stdout.
print("", end="", flush=True)
# Infinite loops are bad for processors, must sleep.
sleep(0.25)
except KeyboardInterrupt:
break
print("\n\nTranscription:")
for line in transcription:
print(line)
if __name__ == "__main__":
main()
openai-whisper
SpeechRecognition
scipy
pyaudio
argparse
torch
rich
git+https://github.com/huggingface/transformers.git
@luweigen
Copy link

luweigen commented Dec 4, 2023

If you are interested , a more comprehensive algorithm to handle realtime data stream is implemented in https://github.com/luweigen/whisper_streaming

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment