Last active
July 5, 2024 02:39
-
-
Save Oceanswave/32da596e8bb10c928f6c69c889c3c130 to your computer and use it in GitHub Desktop.
Streaming Transcriber w/ Whisper v3
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! python3.7 | |
import argparse | |
import io | |
import os | |
import torch | |
from transformers import pipeline | |
import speech_recognition as sr | |
from datetime import datetime, timedelta | |
from queue import Queue | |
from time import sleep | |
from sys import platform | |
from scipy.io import wavfile | |
from rich.progress import Progress, TimeElapsedColumn, BarColumn, TextColumn | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model-name", | |
required=False, | |
default="openai/whisper-large-v3", | |
type=str, | |
help="Name of the pretrained model/ checkpoint to perform ASR. (default: openai/whisper-large-v3)", | |
) | |
parser.add_argument( | |
"--energy_threshold", | |
default=400, | |
help="Energy level for mic to detect.", | |
type=int, | |
) | |
parser.add_argument( | |
"--record_timeout", | |
default=2, | |
help="How real time the recording is in seconds.", | |
type=float, | |
) | |
parser.add_argument( | |
"--phrase_timeout", | |
default=4, | |
help="How much empty space between recordings before we " | |
"consider it a new line in the transcription.", | |
type=float, | |
) | |
parser.add_argument( | |
"--language", | |
required=False, | |
type=str, | |
default="None", | |
help='Language of the input audio. (default: "None" (Whisper auto-detects the language))', | |
) | |
parser.add_argument( | |
"--batch-size", | |
required=False, | |
type=int, | |
default=24, | |
help="Number of parallel batches you want to compute. Reduce if you face OOMs. (default: 24)", | |
) | |
parser.add_argument( | |
"--task", | |
required=False, | |
default="transcribe", | |
type=str, | |
choices=["transcribe", "translate"], | |
help="Task to perform: transcribe or translate to another language. (default: transcribe)", | |
) | |
parser.add_argument( | |
"--timestamp", | |
required=False, | |
type=str, | |
default="chunk", | |
choices=["chunk", "word"], | |
help="Whisper supports both chunked as well as word level timestamps. (default: chunk)", | |
) | |
parser.add_argument( | |
"--device-id", | |
required=False, | |
default="mps", | |
type=str, | |
help='Device ID for your GPU. Just pass the device number when using CUDA, or "mps" for Macs with Apple Silicon. (default: "0")', | |
) | |
if "linux" in platform: | |
parser.add_argument( | |
"--default_microphone", | |
default="pulse", | |
help="Default microphone name for SpeechRecognition. " | |
"Run this with 'list' to view available Microphones.", | |
type=str, | |
) | |
args = parser.parse_args() | |
# The last time a recording was retrieved from the queue. | |
phrase_time = None | |
# Current raw audio bytes. | |
last_sample = bytes() | |
# Thread safe Queue for passing data from the threaded recording callback. | |
data_queue = Queue() | |
# We use SpeechRecognizer to record our audio because it has a nice feature where it can detect when speech ends. | |
recorder = sr.Recognizer() | |
recorder.energy_threshold = args.energy_threshold | |
# Definitely do this, dynamic energy compensation lowers the energy threshold dramatically to a point where the SpeechRecognizer never stops recording. | |
recorder.dynamic_energy_threshold = False | |
# Load / Download model | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=args.model_name, | |
torch_dtype=torch.float16, | |
device="mps" if args.device_id == "mps" else f"cuda:{args.device_id}", | |
model_kwargs={"use_flash_attention_2": False}, | |
) | |
sampling_rate = pipe.feature_extractor.sampling_rate | |
ts = "word" if args.timestamp == "word" else True | |
language = None if args.language == "None" else args.language | |
# Important for linux users. | |
# Prevents permanent application hang and crash by using the wrong Microphone | |
if "linux" in platform: | |
mic_name = args.default_microphone | |
if not mic_name or mic_name == "list": | |
print("Available microphone devices are: ") | |
for index, name in enumerate(sr.Microphone.list_microphone_names()): | |
print(f'Microphone with name "{name}" found') | |
return | |
else: | |
for index, name in enumerate(sr.Microphone.list_microphone_names()): | |
if mic_name in name: | |
source = sr.Microphone( | |
sample_rate=sampling_rate, device_index=index | |
) | |
break | |
else: | |
source = sr.Microphone(sample_rate=sampling_rate) | |
record_timeout = args.record_timeout | |
phrase_timeout = args.phrase_timeout | |
transcription = [""] | |
with source: | |
recorder.adjust_for_ambient_noise(source) | |
def record_callback(_, audio: sr.AudioData) -> None: | |
""" | |
Threaded callback function to receive audio data when recordings finish. | |
audio: An AudioData containing the recorded bytes. | |
""" | |
# Grab the raw bytes and push it into the thread safe queue. | |
data = audio.get_raw_data() | |
data_queue.put(data) | |
# Create a background thread that will pass us raw audio bytes. | |
# We could do this manually but SpeechRecognizer provides a nice helper. | |
recorder.listen_in_background( | |
source, record_callback, phrase_time_limit=record_timeout | |
) | |
# Cue the user that we're ready to go. | |
print("Model loaded.\n") | |
while True: | |
try: | |
now = datetime.utcnow() | |
# Pull raw recorded audio from the queue. | |
if not data_queue.empty(): | |
phrase_complete = False | |
# If enough time has passed between recordings, consider the phrase complete. | |
# Clear the current working audio buffer to start over with the new data. | |
if phrase_time and now - phrase_time > timedelta( | |
seconds=phrase_timeout | |
): | |
last_sample = bytes() | |
phrase_complete = True | |
# This is the last time we received new audio data from the queue. | |
phrase_time = now | |
# Concatenate our current audio data with the latest audio data. | |
while not data_queue.empty(): | |
data = data_queue.get() | |
last_sample += data | |
# Use AudioData to convert the raw data to wav data. | |
audio_data = sr.AudioData( | |
last_sample, source.SAMPLE_RATE, source.SAMPLE_WIDTH | |
) | |
wav_data = io.BytesIO(audio_data.get_wav_data()) | |
# Convert the wav data to a numpy ndarray | |
sample_rate, audio_array = wavfile.read(wav_data) | |
# audio_array is the numpy ndarray containing the audio data | |
# Read the transcription. | |
with Progress( | |
TextColumn("🤗 [progress.description]{task.description}"), | |
BarColumn(style="yellow1", pulse_style="white"), | |
TimeElapsedColumn(), | |
) as progress: | |
progress.add_task("[yellow]Transcribing...", total=None) | |
outputs = pipe( | |
audio_array, | |
chunk_length_s=30, | |
batch_size=args.batch_size, | |
generate_kwargs={"task": args.task, "language": language}, | |
return_timestamps=ts, | |
) | |
# result = audio_model.transcribe(temp_file, fp16=torch.cuda.is_available()) | |
text = outputs["text"].strip() | |
# If we detected a pause between recordings, add a new item to our transcription. | |
# Otherwise edit the existing one. | |
if phrase_complete: | |
transcription.append(text) | |
else: | |
transcription[-1] = text | |
# Clear the console to reprint the updated transcription. | |
os.system("cls" if os.name == "nt" else "clear") | |
for line in transcription: | |
print(line) | |
# Flush stdout. | |
print("", end="", flush=True) | |
# Infinite loops are bad for processors, must sleep. | |
sleep(0.25) | |
except KeyboardInterrupt: | |
break | |
print("\n\nTranscription:") | |
for line in transcription: | |
print(line) | |
if __name__ == "__main__": | |
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
openai-whisper | |
SpeechRecognition | |
scipy | |
pyaudio | |
argparse | |
torch | |
rich | |
git+https://github.com/huggingface/transformers.git |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
If you are interested , a more comprehensive algorithm to handle realtime data stream is implemented in https://github.com/luweigen/whisper_streaming