Created
August 24, 2018 18:33
-
-
Save Orbifold/04011f36b6af9e942863a32845b9b7e2 to your computer and use it in GitHub Desktop.
Learning the cosine function with TensorFlow.js
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| <!DOCTYPE html> | |
| <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> | |
| <head> | |
| <meta charset="utf-8" /> | |
| <title></title> | |
| <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script> | |
| <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.4/lodash.min.js"></script> | |
| <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/Faker/3.1.0/faker.min.js"></script> | |
| <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.0.0-beta/js/bootstrap.min.js"></script> | |
| <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.0.0-beta/css/bootstrap.min.css"> | |
| <script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]"> | |
| </script> | |
| <script src="https://cdn.plot.ly/plotly-latest.min.js"></script> | |
| </head> | |
| <body> | |
| <div class="container"> | |
| <h1>Learning a cosine using TF.js </h1> | |
| <div id="done" style="height: 20px; background-color: limegreen; margin: 50px 0;"></div> | |
| <div id="loss"></div> | |
| <div id="result"></div> | |
| </div> | |
| <script> | |
| const N = 100; | |
| const M = 10; | |
| var loss = []; | |
| async function plot_loss(h) { | |
| loss.push(h.history.loss[0]); | |
| Plotly.newPlot('loss', [{ | |
| x: loss.length, | |
| y: loss, | |
| name: "loss", | |
| type: 'scatter' | |
| }], { | |
| title: "Current loss: " + Math.round(h.history.loss[0]*10000)/10000, | |
| xaxis: { | |
| title: "run" | |
| }, | |
| yaxis: { | |
| title: "loss" | |
| } | |
| }); | |
| } | |
| function sleep(ms) { | |
| return new Promise(resolve => setTimeout(resolve, ms)); | |
| } | |
| async function run() { | |
| const b = _.range(N); | |
| const model = tf.sequential(); | |
| model.add(tf.layers.dense({ | |
| name: "input", | |
| units: 1, | |
| inputShape: [1] | |
| })); | |
| model.add(tf.layers.dense({ | |
| name: "learning_stack_1", | |
| activation: "tanh", | |
| kernelInitializer: "randomNormal", | |
| units: 15 | |
| })); | |
| model.add(tf.layers.dense({ | |
| name: "learning_stack_2", | |
| activation: "tanh", | |
| kernelInitializer: "randomNormal", | |
| units: 15 | |
| })); | |
| model.add(tf.layers.dense({ | |
| name: "learning_stack_3", | |
| activation: "tanh", | |
| kernelInitializer: "randomNormal", | |
| units: 15 | |
| })); | |
| model.add(tf.layers.dense({ | |
| name: "outputter", | |
| activation: "linear", | |
| kernelInitializer: "randomNormal", | |
| units: 1 | |
| })); | |
| model.compile({ | |
| loss: 'meanSquaredError', | |
| optimizer: 'adam' | |
| }); | |
| const xs = tf.tensor2d(b, [N, 1]); | |
| const ys = tf.tensor2d(_.map(b, x => Math.cos(2 * Math.PI * x / N)), [N, 1]); | |
| for (let i = 1; i < M; ++i) { | |
| const h = await model.fit(xs, ys, { | |
| batchSize: 10, | |
| epochs: 10 | |
| }); | |
| //console.log("Loss after Epoch " + i + " : " + h.history.loss[0]); | |
| plot_loss(h); | |
| $("#done").css("width", `${100*i/(M-1)}%`).text(`${Math.round(100*i/(M-1))}%`); | |
| await sleep(100); | |
| } | |
| model.predict(xs).data().then(function(p) { | |
| var actual = { | |
| x: b, | |
| y: _.map(b, x => Math.cos(2 * Math.PI * x / N)), | |
| name: "actual data", | |
| type: 'scatter', | |
| mode: 'lines', | |
| }; | |
| var predicted = { | |
| x: b, | |
| y: p, | |
| name: "predicted data", | |
| type: 'scatter' | |
| }; | |
| Plotly.newPlot('result', [actual, predicted]); | |
| });; | |
| } | |
| //$("#go").click(run); | |
| run(); | |
| </script> | |
| </body> | |
| </html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment