Created
August 23, 2018 12:21
-
-
Save Orbifold/4f2260a482822101427cb0f3c664cf56 to your computer and use it in GitHub Desktop.
R version of TF estimators. See https://tensorflow.rstudio.com.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| library(tfestimators) | |
| response <- function() "Species" | |
| features <- function() setdiff(names(iris), response()) | |
| # split into train, test datasets | |
| set.seed(123) | |
| partitions <- modelr::resample_partition(iris, c(test = 0.2, train = 0.8)) | |
| iris_train <- as.data.frame(partitions$train) | |
| iris_test <- as.data.frame(partitions$test) | |
| # construct feature columns | |
| feature_columns <- feature_columns( | |
| column_numeric(features()) | |
| ) | |
| # construct classifier | |
| classifier <- dnn_classifier( | |
| feature_columns = feature_columns, | |
| hidden_units = c(10, 20, 10), | |
| n_classes = 3 | |
| ) | |
| # construct input function | |
| iris_input_fn <- function(data) { | |
| input_fn(data, features = features(), response = response()) | |
| } | |
| # train classifier with training dataset | |
| train(classifier, input_fn = iris_input_fn(iris_train)) | |
| # valuate with test dataset | |
| predictions <- predict(classifier, input_fn = iris_input_fn(iris_test)) | |
| evaluation <- evaluate(classifier, input_fn = iris_input_fn(iris_test)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment