Created
December 25, 2020 08:15
-
-
Save Shreeyak/0e57d5b227546f08d003e9cdf80e3a49 to your computer and use it in GitHub Desktop.
Using GPU1,2 on a 3-GPU system with DDP causes crash
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright The PyTorch Lightning team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------- | |
# -------------------------------------------- | |
# -------------------------------------------- | |
# USE THIS MODEL TO REPRODUCE A BUG YOU REPORT | |
# -------------------------------------------- | |
# -------------------------------------------- | |
# -------------------------------------------- | |
import os | |
import torch | |
from torch.utils.data import Dataset | |
from pl_examples import cli_lightning_logo | |
from pytorch_lightning import Trainer, LightningModule | |
class RandomDataset(Dataset): | |
""" | |
>>> RandomDataset(size=10, length=20) # doctest: +ELLIPSIS | |
<...bug_report_model.RandomDataset object at ...> | |
""" | |
def __init__(self, size, length): | |
self.len = length | |
self.data = torch.randn(length, size) | |
def __getitem__(self, index): | |
return self.data[index] | |
def __len__(self): | |
return self.len | |
class BoringModel(LightningModule): | |
""" | |
>>> BoringModel() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE | |
BoringModel( | |
(layer): Linear(...) | |
) | |
""" | |
def __init__(self): | |
""" | |
Testing PL Module | |
Use as follows: | |
- subclass | |
- modify the behavior for what you want | |
class TestModel(BaseTestModel): | |
def training_step(...): | |
# do your own thing | |
or: | |
model = BaseTestModel() | |
model.training_epoch_end = None | |
""" | |
super().__init__() | |
self.layer = torch.nn.Linear(32, 2) | |
def forward(self, x): | |
return self.layer(x) | |
def loss(self, batch, prediction): | |
# An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls | |
return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction)) | |
def step(self, x): | |
x = self.layer(x) | |
out = torch.nn.functional.mse_loss(x, torch.ones_like(x)) | |
return out | |
def training_step(self, batch, batch_idx): | |
output = self.layer(batch) | |
loss = self.loss(batch, output) | |
return {"loss": loss} | |
def training_step_end(self, training_step_outputs): | |
return training_step_outputs | |
def training_epoch_end(self, outputs) -> None: | |
torch.stack([x["loss"] for x in outputs]).mean() | |
def validation_step(self, batch, batch_idx): | |
output = self.layer(batch) | |
loss = self.loss(batch, output) | |
return {"x": loss} | |
def validation_epoch_end(self, outputs) -> None: | |
torch.stack([x['x'] for x in outputs]).mean() | |
def test_step(self, batch, batch_idx): | |
output = self.layer(batch) | |
loss = self.loss(batch, output) | |
return {"y": loss} | |
def test_epoch_end(self, outputs) -> None: | |
torch.stack([x["y"] for x in outputs]).mean() | |
def configure_optimizers(self): | |
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) | |
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) | |
return [optimizer], [lr_scheduler] | |
# NOTE: If you are using a cmd line to run your script, | |
# provide the cmd line as below. | |
# opt = "--max_epochs 1 --limit_train_batches 1".split(" ") | |
# parser = ArgumentParser() | |
# args = parser.parse_args(opt) | |
def test_run(): | |
class TestModel(BoringModel): | |
def on_train_epoch_start(self) -> None: | |
print('override any method to prove your bug') | |
# fake data | |
train_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) | |
val_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) | |
test_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) | |
# model | |
model = TestModel() | |
trainer = Trainer( | |
default_root_dir=os.getcwd(), | |
limit_train_batches=1, | |
limit_val_batches=1, | |
max_epochs=1, | |
weights_summary=None, | |
gpus=[1, 2], | |
distributed_backend='ddp', | |
) | |
trainer.fit(model, train_data, val_data) | |
trainer.test(test_dataloaders=test_data) | |
if __name__ == '__main__': | |
cli_lightning_logo() | |
test_run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment