Skip to content

Instantly share code, notes, and snippets.

View Sinjhin's full-sized avatar
😈

John Gardner Sinjhin

😈
View GitHub Profile
@Sinjhin
Sinjhin / gist:a983723c81d6b587b60e95257a210b68
Created March 17, 2025 18:24
2025-ATO-AI_GraniteWorkshopCorrectedFirstCodeBlock
# Install the tsfm library
! pip install "tsfm_public[notebooks] @ git+https://github.com/ibm-granite/[email protected]" -U
!pip install numpy==1.26.4
!pip install --force-reinstall pandas
# Install the tsfm library
! pip install "tsfm_public[notebooks] @ git+https://github.com/ibm-granite/[email protected]" -U
# Reinstall NumPy
!pip install numpy==1.26.4
# Reinstall pandas
!pip install --force-reinstall pandas
@Sinjhin
Sinjhin / model_mem.py
Created January 1, 2025 16:29
Memory Needed For AI Model
'''
M = ((P * 4B) / (32 / Q)) * 1.2
Where:
- M = Mem needed in GB
- P = num of params
- 4B = 4 bytes per parameter (@32 quant)
- 32 = bits in 4 bytes
- Q = model quantization
@Sinjhin
Sinjhin / pos_enc_vizualize.py
Created November 28, 2024 19:36
Positional Encoder for Transformer
import torch
import matplotlib.pyplot as plt
def visualize_positional_encoding(seq_length=83, d_model=32):
pos = torch.arange(0, seq_length).unsqueeze(-1).float()
pos_encoding = torch.zeros(seq_length, d_model)
pos_encoding[:, 0::2] = torch.sin(pos / 10000 ** (torch.arange(0, d_model, 2) / d_model))
pos_encoding[:, 1::2] = torch.cos(pos / 10000 ** (torch.arange(1, d_model, 2) / d_model))
@Sinjhin
Sinjhin / proctor.py
Created November 24, 2024 17:34
Proctor For Multi Dim
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
import random
from GADEv2_2.util.dataset_loaders.arc_dataset.loader import ARCDataLoader
from GADEv2_2.networks.multi_dim_trial import MultiDimTrial
class ZeTaskMan:
@Sinjhin
Sinjhin / multi_dim_trial.py
Created November 18, 2024 23:04
Multi-Dim-Example-Test
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiDimTrial(nn.Module):
def __init__(self, input_shape, output_shape, num_demos, mode='train'):
super(MultiDimTrial, self).__init__()
self.name = 'MultiDimTrial'
self.mode = mode
@Sinjhin
Sinjhin / loader.py
Created November 16, 2024 23:57
ARC-AGI Loader
import os
import json
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
class ARCDataset(Dataset):
def __init__(self, challenges_file, solutions_file=None):
self.tasks = []
# Load challenges
@Sinjhin
Sinjhin / poc_neat.py
Created November 9, 2024 22:31
Just trying to implement NEAT from scratch while reading the paper
import torch.nn as nn
import math
import random
import copy
XOR_INPUTS = [
([0, 0], 0),
([0, 1], 1),
([1, 0], 1),
([1, 1], 0)
@Sinjhin
Sinjhin / kaggle_compile.py
Created October 23, 2024 12:01
Kaggle Compile Script
import os
import nbformat
import ast
# Determine the absolute path to the GADEv2_2 root based on this script's location
script_dir = os.path.dirname(os.path.abspath(__file__))
repo_path = os.path.abspath(os.path.join(script_dir, "../..")) # Two levels up to the GADEv2_2 root
main_file = os.path.join(repo_path, "main.py")
def extract_imports_from_main(main_file):
@Sinjhin
Sinjhin / FFERvsBTC.py
Created September 18, 2024 02:30
FFERvsBTCUSD
import requests
import pandas as pd
import matplotlib.pyplot as plt
import yfinance as yf
# FRED API Key (you need to get your own from https://fred.stlouisfed.org/)
FRED_API_KEY = 'YOUR_KEY_HERE'
# Define the URL for FRED (Federal Funds Rate)
FRED_URL = f'https://api.stlouisfed.org/fred/series/observations?series_id=FEDFUNDS&api_key={FRED_API_KEY}&file_type=json'
<script src="../node_modules/steal/steal.js">
window.rerun = true;
function rerunIfSuccessful() {
var result = document.getElementById('qunit-testresult');
var failed = result.getElementsByClassName('failed');
if (!failed.length) {
setTimeout(rerunIfSuccessful, 4000);
} else if (failed[0].innerHTML === "0" && window.rerun) {