Created
November 18, 2024 23:04
-
-
Save Sinjhin/1c893dcc3f6f99dc40da8cb684fe3d30 to your computer and use it in GitHub Desktop.
Multi-Dim-Example-Test
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class MultiDimTrial(nn.Module): | |
def __init__(self, input_shape, output_shape, num_demos, mode='train'): | |
super(MultiDimTrial, self).__init__() | |
self.name = 'MultiDimTrial' | |
self.mode = mode | |
self.num_demos = num_demos | |
self.input_shape = input_shape | |
self.output_shape = output_shape | |
self.batch_size = 10 | |
self.dropout3d = nn.Dropout3d(p=0.2) | |
self.dropout2d = nn.Dropout2d(p=0.2) | |
self.dropout1d = nn.Dropout(p=0.2) | |
self.bn1 = nn.BatchNorm3d(32) | |
self.bn2 = nn.BatchNorm3d(64) | |
self.bn3 = nn.BatchNorm3d(32) | |
self.upsample = nn.Upsample( | |
size=(num_demos, output_shape[0], output_shape[1]), | |
mode='trilinear', | |
align_corners=False | |
) | |
# Transformer to learn relationships across the 3d demo dimension | |
transformer_dim = 10 * output_shape[0] * output_shape[1] | |
self.pos_encoding = nn.Parameter(torch.randn(self.batch_size, self.num_demos, transformer_dim)) | |
self.transformer = nn.TransformerEncoderLayer( | |
d_model=transformer_dim, | |
nhead=transformer_dim % 4 + 1, | |
dim_feedforward=transformer_dim*2, | |
dropout=0.2 | |
) | |
# 3D to 3D transformation learning | |
self.transform3d_1 = nn.ConvTranspose3d( | |
10, | |
32, | |
kernel_size=(self.num_demos, 3, 3), | |
stride=(1, 1, 1), | |
padding=(0, 1, 1) | |
) | |
self.transform3d_2 = nn.ConvTranspose3d( | |
32, | |
64, | |
kernel_size=(self.num_demos, 3, 3), | |
padding=(0, 1, 1) | |
) | |
# 3D feature extraction and pattern learning | |
self.conv3d_1 = nn.Conv3d(64, 32, kernel_size=(self.num_demos, 2, 2), padding=(0, 2, 2)) | |
self.conv3d_2 = nn.Conv3d(32, 10, kernel_size=(self.num_demos, 4, 4), padding=0) | |
# 3D to 2D projection layers | |
self.project_3d_to_2d = nn.Sequential( | |
nn.Linear(transformer_dim, 128), | |
nn.ReLU(), | |
nn.Linear(128, 81), | |
) | |
# Compression of 3D knowledge into 2D operations | |
self.compress_knowledge = nn.Sequential( | |
nn.Linear(16 * 9 * 9 * 5, 16 * 9 * 9), # Compress demo dimension | |
nn.ReLU(), | |
nn.Linear(16 * 9 * 9, 9 * 9) # Project to output size | |
) | |
# Final output projection | |
self.output_projection = nn.Linear(16*9*9, 9*9) | |
def forward(self, input): | |
x = input.float() | |
x = x.unsqueeze(0).unsqueeze(0) # [B, C, D, H, W] | |
if self.mode == 'train': | |
x = x.expand(self.batch_size, 10, -1, -1, -1) | |
x = F.relu(self.upsample(x)) | |
x = self.dropout3d(x) | |
# Reshape for transformer | |
x = x.permute(0, 2, 1, 3, 4) # [batch, demos, features, 9, 9] | |
x = x.flatten(2) # [batch, demos, features*9*9] | |
# Add positional encoding | |
x = x + self.pos_encoding | |
# Apply transformer across demo dimension | |
x = x.permute(1, 0, 2) # [demos, batch, F*H*W] | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # [batch, demos, F*H*W] | |
x = F.interpolate( | |
x.view(self.batch_size, self.num_demos, 10, 9, 9), | |
size=(10, 9, 9), | |
mode='trilinear', | |
align_corners=False | |
) | |
x = x.permute(0, 2, 1, 3, 4) | |
x = self.dropout3d(x) | |
else: # test mode | |
# Input shape: [B, C, H, W] | |
x = x.expand(1, 10, -1, -1, -1) # [1, 10, H, W] | |
x = F.relu(self.upsample(x)) | |
x = self.dropout3d(x) | |
# Similar transformer processing | |
x = x.permute(0, 2, 1, 3, 4) # [1, demos, features, 9, 9] | |
x = x.flatten(2) # [1, demos, features*9*9] | |
# Add positional encoding and transformer | |
x = x + self.pos_encoding[0:1] # Only use first batch item | |
x = x.permute(1, 0, 2) # [demos, 1, F*H*W] | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # [1, demos, F*H*W] | |
# Reshape back | |
x = x.view(1, self.num_demos, 10, 9, 9) | |
x = x.permute(0, 2, 1, 3, 4) | |
x = self.dropout3d(x) | |
# Transform in 3D space | |
x = F.relu(self.transform3d_1(x)) | |
x = F.relu(self.bn1(x)) # We might not want this | |
x = self.dropout3d(x) | |
x = F.relu(self.transform3d_2(x)) # [batch, 16, demos, H, W] | |
x = F.relu(self.bn2(x)) # We might not want this | |
x = self.dropout3d(x) | |
# Extract 3D patterns | |
x = F.relu(self.conv3d_1(x)) | |
x = F.relu(self.bn3(x)) # We might not want this | |
x = self.dropout3d(x) | |
x = F.relu(self.conv3d_2(x)) | |
x = x[0] # [C, D, H, W] | |
if self.mode != 'train': | |
x = x.mean(dim=1) # Should give us [10, 9, 9] | |
weights = torch.arange(10, dtype=torch.float32, device=x.device).view(10, 1, 1) | |
x = (x * weights).sum(dim=0) # Sum across the weighted channels | |
else: | |
weights = torch.arange(10, dtype=torch.float32, device=x.device).view(10, 1, 1, 1) | |
x = (x * weights).sum(dim=0) | |
return x | |
def set_mode(self, mode): | |
"""Switch between train and test modes""" | |
assert mode in ['train', 'test'] | |
self.mode = mode |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment