Skip to content

Instantly share code, notes, and snippets.

@Steffo99
Last active October 21, 2018 18:01
Show Gist options
  • Save Steffo99/68390bcb95f9bb475b99e70e37e43bfa to your computer and use it in GitHub Desktop.
Save Steffo99/68390bcb95f9bb475b99e70e37e43bfa to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{amssymb}
% New root
\let\oldsqrt\sqrt
\def\sqrt{\mathpalette\DHLhksqrt}
\def\DHLhksqrt#1#2{%
\setbox0=\hbox{$#1\oldsqrt{#2\,}$}\dimen0=\ht0
\advance\dimen0-0.2\ht0
\setbox2=\hbox{\vrule height\ht0 depth -\dimen0}%
{\box0\lower0.4pt\box2}}
% End new root
\begin{document}
\section{Sottosuccessioni}
Si dice \textbf{sottosuccessione} di una successione \(\{a_n\}_n\) la composizione \(a_n \circ K\) dove \(K : \mathbb{N} \to \mathbb{N}\) è strettamente crescente.\\
\((a_n \circ K)(n) = a_{K_n} = a_{2n}\)\\
Praticamente sono successioni il cui dominio non è \(\mathbb{N}\), ma solo una parte di esso, ed è dato da un'altra successione \(K_n\).\\\\
Se \(a_n \to l \in \mathbb{R}\), allora anche \(a_{K_n} \to l\).\\
Se \(\forall K : \mathbb{N} \to \mathbb{N}, a_{K_n} \to l\), allora \(a_n \to l\).\\
Se una successione ha \textbf{limite} \(l\), tutte le estratte hanno lo \textbf{stesso limite}.\\
Viceversa, se tutte le sottosuccessioni hanno lo \textbf{stesso limite} \(l\), allora anche la principale ha \textbf{limite} \(l\).\\
Se esistono due sottosuccessioni con \textbf{limiti diversi}, allora la successione di partenza \textbf{non ha limite}.\\\\
Posso utilizzare le sottosuccessioni per trovare il limite di una successione solo quando l'unione del dominio di queste dia come risultato \(\mathbb{N}\).\\
\section{Teorema di bisezione}
Se in un intervallo "di limite" c'è almeno un punto di accumulazione, allora anche dividendolo in due parti il punto di accumulazione rimarrà in almeno una di queste due.
\section{Punto limite}
Se \(a_n\) ha una sottosuccessione convergente a l, si dice che l è un \textbf{punto limite}.
\section{Enunciato teorema di Bolzano-Weierstrass}
Sia \(\{a_n\}_n\) una \textbf{successione limitata}.\\
Allora, esiste almeno una sottosuccessione \(a_{K_n}\) di \(a_n\) \textbf{convergente}.
\section{Dimostrazione teorema di B-W}
Siccome \(\{a_n\}\) è limitata, allora esistono \(\alpha_0, \beta_0 \in \mathbb{R}, \alpha_0 \leq a_n \leq \beta_0\).\\
Chiamiamo \(I_0 = [\alpha_0, \beta_0]\) l'intervallo tra questi due punti.\\
Prendiamo l'insieme \(A_0 = \{n : a_n \in I_0\}\) di tutti i punti all'interno di questo intervallo.\\
\(A_0\) contiene infiniti valori, essendo una successione in \(\mathbb{N}\).\\
Applichiamo il teorema di bisezione: il punto medio dell'intervallo è \(\mu_0 = \frac{\alpha_0 + \beta_0}{2}\).\\
L'intervallo ora risulta diviso in \(I_0 = [\alpha_0, \mu_0] \cup [\mu_0, \beta_0]\).\\
Per il teorema di bisezione, almeno uno tra \([\alpha_0, \mu_0]\) e \([\mu_0, \beta_0]\) è infinito.\\
Se l'infinito è \([\alpha_0, \mu_0]\), allora \(\alpha_1 = \alpha_0\) e \(\beta_1 = \mu_0\).\\
Se l'infinito è \([\mu_0, \beta_0]\), allora \(\alpha_1 = \mu_0\) e \(\beta_1 = \beta_0)\).\\
In ogni caso, \(\alpha_0 \leq \alpha_1 \leq \beta_1 \leq \beta_0\)\\
Creiamo un nuovo intervallo \(I_1 = [\alpha_1, \beta_1]\).\\\\
Ripetiamo il procedimento di bisezione con \(\alpha_1\) e \(\beta_1\): dovremmo ottenere ancora un risultato dimezzato.\\
Dopo n passi, otteniamo un intervallo \(I_n = [\alpha_n, \beta_n]\) infinitamente piccolo.\\
Dunque, \(\alpha_0 \leq \alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_n \leq \beta_n \leq \dots \leq \beta_2 \leq \beta_1 \leq \beta_0\).\\\\
\(\beta_n - \alpha_n = \frac{\beta_0 - \alpha_0}{2^n}\)\\
\(A_n = \{m : a_m \in I_n\}\) è infinito.\\
Possiamo dimostrare per induzione che le precedenti tre righe sono vere \(\forall n \in \mathbb{N}\).
Dunque, \(\{\alpha_n\}\) è una successione \textbf{monotona crescente}, e ha limite \(l\), e \(\{\beta_n\}\) è una successione \textbf{monotona decrescente}, ed essa ha limite \(m\).\\\\
Sapendo per la \textsc{gerarchia degli infiniti} che \(\frac{\beta_0 - \alpha_0}{2^n}\) tende a 0, allora possiamo anche dire che \(\beta_n - \alpha_n\) tende a 0, quindi \(l = m\).\\
\(\forall n\), prendo \(K_n \in A_0, a_{K_n} \in I_n, \alpha_n \leq a_{K_n} \leq \beta_n\).\\
Per il \textsc{teorema dei carabinieri}, visto che \(\alpha_n\) e \(\beta_n\) tendono ad l, allora anche \(a_{K_n}\) tenderà ad l.\\\\
Se \(a_n\) è \textbf{limitata}, allora \(a_n\) ha un \textbf{punto limite}, ma non viceversa.
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment