Skip to content

Instantly share code, notes, and snippets.

View StrikingLoo's full-sized avatar
😄

Luciano StrikingLoo

😄
View GitHub Profile
fc_layer_size = 256
img_size = IMG_SIZE
conv_inputs = keras.Input(shape=(img_size[1], img_size[0],3), name='ani_image')
conv_layer = layers.Conv2D(128, kernel_size=3, activation='relu')(conv_inputs)
conv_layer = layers.MaxPool2D(pool_size=(2,2))(conv_layer)
conv_layer = layers.Conv2D(128, kernel_size=3, activation='relu')(conv_layer)
conv_layer = layers.MaxPool2D(pool_size=(2,2))(conv_layer)
cat_quantity = sum(labels_valid)
for i in range(1,10):
print('threshold :'+str(.1*i))
print(sum(labels_valid[preds > .1*i])/labels_valid[preds > .1*i].shape[0])
fc_layer_size = 256
img_size = IMG_SIZE
conv_inputs = keras.Input(shape=(img_size[1], img_size[0],3), name='ani_image')
#first convolutional layer.
conv_layer = layers.Conv2D(48, kernel_size=3, activation='relu')(conv_inputs)
conv_layer = layers.MaxPool2D(pool_size=(2,2))(conv_layer)
#second convolutional layer.
conv_layer = layers.Conv2D(48, kernel_size=3, activation='relu')(conv_layer)
conv_layer = layers.MaxPool2D(pool_size=(2,2))(conv_layer)
preds = conv_model.predict(x_valid)
preds = np.asarray([pred[0] for pred in preds])
np.corrcoef(preds, labels_valid)[0][1] # 0.15292172
fc_layer_size = 128
img_size = IMG_SIZE
conv_inputs = keras.Input(shape=(img_size[1], img_size[0],3), name='ani_image')
conv_layer = layers.Conv2D(24, kernel_size=3, activation='relu')(conv_inputs)
conv_layer = layers.MaxPool2D(pool_size=(2,2))(conv_layer)
conv_x = layers.Flatten(name = 'flattened_features')(conv_layer) #turn image to vector.
conv_x = layers.Dense(fc_layer_size, activation='relu', name='first_layer')(conv_x)
conv_x = layers.Dense(fc_layer_size, activation='relu', name='second_layer')(conv_x)
customAdam = keras.optimizers.Adam(lr=0.001)
model.compile(optimizer=customAdam, # Optimizer
# Loss function to minimize
loss="mean_squared_error",
# List of metrics to monitor
metrics=["binary_crossentropy","mean_squared_error"])
print('# Fit model on training data')
history = model.fit(x_train,
from tensorflow import keras
from tensorflow.keras import layers
total_pixels = img_size[0] *img_size[1] * 3
fc_size = 512
inputs = keras.Input(shape=(img_size[1], img_size[0],3), name='ani_image')
x = layers.Flatten(name = 'flattened_img')(inputs) #turn image to vector.
x = layers.Dense(fc_size, activation='relu', name='first_layer')(x)
SAMPLE_SIZE = 2048
print("loading training cat images...")
cat_train_set = np.asarray([pixels_from_path(cat) for cat in glob.glob('cats/*')[:SAMPLE_SIZE]])
print("loading training dog images...")
dog_train_set = np.asarray([pixels_from_path(dog) for dog in glob.glob('dogs/*')[:SAMPLE_SIZE]])
valid_size = 512
print("loading validation cat images...")
cat_valid_set = np.asarray([pixels_from_path(cat) for cat in glob.glob('cats/*')[-valid_size:]])
print("loading validation dog images...")
IMG_SIZE = (94, 125)
def pixels_from_path(file_path):
im = Image.open(file_path)
im = im.resize(IMG_SIZE)
np_im = np.array(im)
#matrix of pixel RGB values
return np_im
shape_counts = defaultdict(int)
for i, cat in enumerate(glob.glob('cats/*')[:1000]):
if i%100==0:
print(i)
img_shape = pixels_from_path(cat).shape #loads image as np matrix and checks shape.
shape_counts[str(img_shape)]= shape_counts[str(img_shape)]+ 1
shape_items = list(shape_counts.items())
shape_items.sort(key = lambda x: x[1])
shape_items.reverse()