Skip to content

Instantly share code, notes, and snippets.

View ThilinaRajapakse's full-sized avatar
🎯
Focusing

Thilina Rajapakse ThilinaRajapakse

🎯
Focusing
View GitHub Profile
Metric Value
MRR@1 0.8084420567920184
MRR@2 0.8511128165771297
MRR@3 0.861857252494244
MRR@5 0.8678357636224099
MRR@10 0.8696916151981385
Top 1 Accuracy 0.8084420567920184
Top 2 Accuracy 0.8937835763622409
Top 3 Accuracy 0.9260168841135841
Top 5 Accuracy 0.9516500383729855
import logging
from simpletransformers.retrieval import RetrievalModel, RetrievalArgs
logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
import logging
from simpletransformers.retrieval import RetrievalModel, RetrievalArgs
logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
import logging
import pandas as pd
from simpletransformers.classification import (
MultiLabelClassificationModel,
MultiLabelClassificationArgs,
)
logging.basicConfig(level=logging.INFO)
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import (
RobertaModel
)
class RobertaForMultiLabelSequenceClassification(BertPreTrainedModel):
"""
model English to Sinhalese Sinhalese to English
mT5 10.3 24.4
Tatoeba 9.2 22.1
# Predict
sinhala_preds = model.predict(to_sinhala)
eng_sin_bleu = sacrebleu.corpus_bleu(sinhala_preds, sinhala_truth)
print("--------------------------")
print("English to Sinhalese: ", eng_sin_bleu.score)
english_preds = model.predict(to_english)
sin_eng_bleu = sacrebleu.corpus_bleu(english_preds, english_truth)
eval_df = pd.read_csv("data/eval.tsv", sep="\t").astype(str)
sinhala_truth = [eval_df.loc[eval_df["prefix"] == "translate english to sinhala"]["target_text"].tolist()]
to_sinhala = eval_df.loc[eval_df["prefix"] == "translate english to sinhala"]["input_text"].tolist()
english_truth = [eval_df.loc[eval_df["prefix"] == "translate sinhala to english"]["target_text"].tolist()]
to_english = eval_df.loc[eval_df["prefix"] == "translate sinhala to english"]["input_text"].tolist()
import logging
import sacrebleu
import pandas as pd
from simpletransformers.t5 import T5Model, T5Args
logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
# Train the model
model.train_model(train_df, eval_data=eval_df)