Created
November 12, 2021 14:12
-
-
Save ThilinaRajapakse/a6bca35f2ab1a69ecbb0a4495d6b09e8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import logging | |
from simpletransformers.retrieval import RetrievalModel, RetrievalArgs | |
logging.basicConfig(level=logging.INFO) | |
transformers_logger = logging.getLogger("transformers") | |
transformers_logger.setLevel(logging.WARNING) | |
train_data = "data/nq-train.json" | |
eval_data = "data/nq-dev.json" | |
model_type = "custom" | |
model_name = None | |
context_name = "bert-base-uncased" | |
query_name = "bert-base-uncased" | |
model_args = RetrievalArgs() | |
model_args.reprocess_input_data = True | |
model_args.overwrite_output_dir = True | |
model_args.use_cached_eval_features = False | |
model_args.retrieve_n_docs = 100 | |
model_args.hard_negatives = False | |
model_args.max_seq_length = 256 | |
model_args.num_train_epochs = 40 | |
model_args.train_batch_size = 40 | |
model_args.eval_batch_size = 128 | |
model_args.use_hf_datasets = True | |
model_args.learning_rate = 1e-5 | |
model_args.save_steps = -1 | |
model_args.evaluate_during_training = False | |
model_args.wandb_project = "Training DPR on NQ" | |
model_args.save_model_every_epoch = False | |
# Create a TransformerModel | |
model = RetrievalModel( | |
model_type=model_type, | |
model_name=model_name, | |
context_encoder_name=context_name, | |
query_encoder_name=query_name, | |
args=model_args, | |
force_redownload=True | |
) | |
model.train_model(train_data, eval_data=eval_data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment