Created
February 20, 2023 23:59
-
-
Save ThoenigAdrian/1af63a11637264a509e7dd73bd2c1a18 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch.nn | |
import timeit | |
from torch.nn import Linear | |
shape = [784, 50, 50, 50, 10] | |
batch_size = 500 | |
x = torch.rand((500, 784), device="cuda") | |
y = torch.rand((500, 10), device="cuda") | |
model_1 = torch.nn.Sequential(Linear(784, 50, device="cuda"), torch.nn.Sigmoid(), | |
Linear(50, 50, device="cuda"), torch.nn.Sigmoid(), | |
Linear(50, 50, device="cuda"), torch.nn.Sigmoid(), | |
Linear(50, 10, device="cuda"), torch.nn.Sigmoid()) | |
model_2 = torch.nn.Sequential(Linear(784, 50, device="cuda"), torch.nn.Sigmoid(), | |
Linear(50, 50, device="cuda"), torch.nn.Sigmoid(), | |
Linear(50, 50, device="cuda"), torch.nn.Sigmoid(), | |
Linear(50, 10, device="cuda"), torch.nn.Sigmoid()) | |
adam_original = torch.optim.Adam(model_1.parameters(), foreach=False) | |
adam_foreach = torch.optim.Adam(model_2.parameters(), foreach=True) | |
def train(xx, yy, model, iters, adam): | |
crit = torch.nn.MSELoss() | |
model.debug = False | |
for i in range(iters): | |
out = model.forward(xx) | |
loss = crit(out, yy) | |
loss.backward() | |
adam.step() | |
time_without_foreach = timeit.timeit("train(x, y, model_1, 8000, adam_original)", globals=globals(), number=1) | |
time_with_foreach = timeit.timeit("train(x, y, model_2, 8000, adam_foreach)", globals=globals(), number=1) | |
print(f"{time_without_foreach=:.2f} 100%") | |
relative_performance_improvement = time_with_foreach / time_without_foreach * 100 | |
print(f"{time_with_foreach=:.2f} {relative_performance_improvement:.2f} %") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment