Created
January 22, 2022 18:06
-
-
Save TransGirlCodes/4e3d3fbe5d90ec275e3c591bff89dec8 to your computer and use it in GitHub Desktop.
Benchmarking Canonical for Kmers
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### A Pluto.jl notebook ### | |
# v0.17.7 | |
using Markdown | |
using InteractiveUtils | |
# ╔═╡ 47e088e3-00ae-46b2-b0ba-325e52156381 | |
import Pkg; Pkg.activate("/Users/bward/repos/github/BioJulia/Kmers.jl") | |
# ╔═╡ ead5355a-0262-4617-8551-d6b1d21c62bc | |
using Kmers, BioSequences, BenchmarkTools, DataFrames, Gadfly | |
# ╔═╡ ed5f28f2-002d-486f-87fc-c3a5e4fce772 | |
a = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{31}))) | |
# ╔═╡ 89723451-2bd2-4f62-97c3-371303861dda | |
b = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{63}))) | |
# ╔═╡ 880ba600-2d78-4c92-8986-265c82dbf692 | |
c = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{127}))) | |
# ╔═╡ bc707264-802c-4637-965d-2f4ce2d9729f | |
d = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{201}))) | |
# ╔═╡ fb456d3f-7ea9-4a5a-889d-a81b2713ef67 | |
e = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{301}))) | |
# ╔═╡ b3eed7f6-0f5b-4cce-9f76-11c8b9d368ee | |
f = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{501}))) | |
# ╔═╡ f100f892-2a52-4186-87ef-5856d2ab6481 | |
canonical_tbl = DataFrame( | |
min = [minimum(x).time for x in (a, b, c, d, e, f)], | |
med = [median(x).time for x in (a, b, c, d, e, f)], | |
K = [31, 63, 127, 201, 301, 501], | |
fun = fill("canonical", 6) | |
) | |
# ╔═╡ 3de72748-385c-42a9-ad44-f018f4de6e62 | |
canonical2(m::Kmer) = iscanonical(m) ? m : reverse_complement(m) | |
# ╔═╡ 3befddb7-dec5-42c7-be58-40d01053d57a | |
A = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{31}))) | |
# ╔═╡ 85209877-a4af-47fb-a208-d8d4ca6f022d | |
B = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{63}))) | |
# ╔═╡ 4ed5afaa-3bb7-4c3b-9cc4-6a2e563d4368 | |
C = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{127}))) | |
# ╔═╡ 9cb44d49-1c13-49b1-8c18-dc50f5252ecd | |
D = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{201}))) | |
# ╔═╡ 66528c01-f6bd-483d-9a47-cfdfb5fc3be7 | |
E = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{301}))) | |
# ╔═╡ fad40869-4bb7-4611-843b-490e723be9da | |
F = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{501}))) | |
# ╔═╡ b89726c8-c774-4175-9f7d-be59b244b367 | |
canonical2_tbl = DataFrame( | |
min = [minimum(x).time for x in (A, B, C, D, E, F)], | |
med = [median(x).time for x in (A, B, C, D, E, F)], | |
K = [31, 63, 127, 201, 301, 501], | |
fun = fill("canonical2", 6) | |
) | |
# ╔═╡ 8eda9be0-d604-45ac-b3a1-3fc14f3c0103 | |
combined_tbl = vcat(canonical_tbl, canonical2_tbl) | |
# ╔═╡ 847b357d-9c1a-4495-afd2-986e4a5ca37a | |
plot(combined_tbl, x = :K, y = :min, color = :fun, Geom.line) | |
# ╔═╡ 72f3cd71-95a9-4a91-b568-6824891bacef | |
plot(combined_tbl, x = :K, y = :med, color = :fun, Geom.line) | |
# ╔═╡ Cell order: | |
# ╠═47e088e3-00ae-46b2-b0ba-325e52156381 | |
# ╠═ead5355a-0262-4617-8551-d6b1d21c62bc | |
# ╠═ed5f28f2-002d-486f-87fc-c3a5e4fce772 | |
# ╠═89723451-2bd2-4f62-97c3-371303861dda | |
# ╠═880ba600-2d78-4c92-8986-265c82dbf692 | |
# ╠═bc707264-802c-4637-965d-2f4ce2d9729f | |
# ╠═fb456d3f-7ea9-4a5a-889d-a81b2713ef67 | |
# ╠═b3eed7f6-0f5b-4cce-9f76-11c8b9d368ee | |
# ╠═f100f892-2a52-4186-87ef-5856d2ab6481 | |
# ╠═3de72748-385c-42a9-ad44-f018f4de6e62 | |
# ╠═3befddb7-dec5-42c7-be58-40d01053d57a | |
# ╠═85209877-a4af-47fb-a208-d8d4ca6f022d | |
# ╠═4ed5afaa-3bb7-4c3b-9cc4-6a2e563d4368 | |
# ╠═9cb44d49-1c13-49b1-8c18-dc50f5252ecd | |
# ╠═66528c01-f6bd-483d-9a47-cfdfb5fc3be7 | |
# ╠═fad40869-4bb7-4611-843b-490e723be9da | |
# ╠═b89726c8-c774-4175-9f7d-be59b244b367 | |
# ╠═8eda9be0-d604-45ac-b3a1-3fc14f3c0103 | |
# ╠═847b357d-9c1a-4495-afd2-986e4a5ca37a | |
# ╠═72f3cd71-95a9-4a91-b568-6824891bacef |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment