Created
April 25, 2022 14:16
-
-
Save TransGirlCodes/85d60b4c8f7ff17d89aa9968e4ca275e to your computer and use it in GitHub Desktop.
Benchmarking canonical function for NTuple based Kmers
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### A Pluto.jl notebook ### | |
# v0.17.7 | |
using Markdown | |
using InteractiveUtils | |
# ╔═╡ 47e088e3-00ae-46b2-b0ba-325e52156381 | |
import Pkg; Pkg.activate("/Users/bward/repos/github/BioJulia/Kmers.jl") | |
# ╔═╡ ead5355a-0262-4617-8551-d6b1d21c62bc | |
using Kmers, BioSequences, BenchmarkTools, DataFrames, Gadfly | |
# ╔═╡ ed5f28f2-002d-486f-87fc-c3a5e4fce772 | |
a = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{31}))) | |
# ╔═╡ 89723451-2bd2-4f62-97c3-371303861dda | |
b = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{63}))) | |
# ╔═╡ 880ba600-2d78-4c92-8986-265c82dbf692 | |
c = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{127}))) | |
# ╔═╡ bc707264-802c-4637-965d-2f4ce2d9729f | |
d = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{201}))) | |
# ╔═╡ fb456d3f-7ea9-4a5a-889d-a81b2713ef67 | |
e = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{301}))) | |
# ╔═╡ b3eed7f6-0f5b-4cce-9f76-11c8b9d368ee | |
f = @benchmark canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{501}))) | |
# ╔═╡ f100f892-2a52-4186-87ef-5856d2ab6481 | |
canonical_tbl = DataFrame( | |
min = [minimum(x).time for x in (a, b, c, d, e, f)], | |
med = [median(x).time for x in (a, b, c, d, e, f)], | |
max = [maximum(x).time for x in (a, b, c, d, e, f)], | |
K = [31, 63, 127, 201, 301, 501], | |
N = [1, 2, 4, 7, 10, 16], | |
fun = fill("canonical", 6) | |
) | |
# ╔═╡ 3de72748-385c-42a9-ad44-f018f4de6e62 | |
@inline canonical2(m::Kmer) = iscanonical(m) ? m : reverse_complement(m) | |
# ╔═╡ 3befddb7-dec5-42c7-be58-40d01053d57a | |
A = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{31}))) | |
# ╔═╡ 85209877-a4af-47fb-a208-d8d4ca6f022d | |
B = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{63}))) | |
# ╔═╡ 4ed5afaa-3bb7-4c3b-9cc4-6a2e563d4368 | |
C = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{127}))) | |
# ╔═╡ 9cb44d49-1c13-49b1-8c18-dc50f5252ecd | |
D = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{201}))) | |
# ╔═╡ 66528c01-f6bd-483d-9a47-cfdfb5fc3be7 | |
E = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{301}))) | |
# ╔═╡ fad40869-4bb7-4611-843b-490e723be9da | |
F = @benchmark canonical2(m) setup=(m=rand(Kmers.kmertype(DNAKmer{501}))) | |
# ╔═╡ b89726c8-c774-4175-9f7d-be59b244b367 | |
canonical2_tbl = DataFrame( | |
min = [minimum(x).time for x in (A, B, C, D, E, F)], | |
med = [median(x).time for x in (A, B, C, D, E, F)], | |
max = [maximum(x).time for x in (A, B, C, D, E, F)], | |
K = [31, 63, 127, 201, 301, 501], | |
N = [1, 2, 4, 7, 10, 16], | |
fun = fill("canonical2", 6) | |
) | |
@inline function clever_canonical(m::Kmer{A,K,N}) where {A,K,N} | |
if N < 4 | |
return min(m, reverse_complement(m)) | |
else | |
return iscanonical(m) ? m : reverse_complement(m) | |
end | |
end | |
cA = @benchmark clever_canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{31}))) | |
cB = @benchmark clever_canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{63}))) | |
cC = @benchmark clever_canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{127}))) | |
cD = @benchmark clever_canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{201}))) | |
cE = @benchmark clever_canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{301}))) | |
cF = @benchmark clever_canonical(m) setup=(m=rand(Kmers.kmertype(DNAKmer{501}))) | |
clever_tbl = DataFrame( | |
min = [minimum(x).time for x in (cA, cB, cC, cD, cE, cF)], | |
med = [median(x).time for x in (cA, cB, cC, cD, cE, cF)], | |
max = [maximum(x).time for x in (cA, cB, cC, cD, cE, cF)], | |
K = [31, 63, 127, 201, 301, 501], | |
N = [1, 2, 4, 7, 10, 16], | |
fun = fill("clever_canonical", 6) | |
) | |
# ╔═╡ 8eda9be0-d604-45ac-b3a1-3fc14f3c0103 | |
combined_tbl = vcat(canonical_tbl, canonical2_tbl, clever_tbl) | |
# ╔═╡ 847b357d-9c1a-4495-afd2-986e4a5ca37a | |
plot(combined_tbl, x = :N, y = :min, color = :fun, Geom.point) | |
# ╔═╡ 72f3cd71-95a9-4a91-b568-6824891bacef | |
plot(combined_tbl, x = :N, y = :med, color = :fun, Geom.point) | |
plot(combined_tbl, x = :N, y = :max, color = :fun, Geom.point) | |
# ╔═╡ Cell order: | |
# ╠═47e088e3-00ae-46b2-b0ba-325e52156381 | |
# ╠═ead5355a-0262-4617-8551-d6b1d21c62bc | |
# ╠═ed5f28f2-002d-486f-87fc-c3a5e4fce772 | |
# ╠═89723451-2bd2-4f62-97c3-371303861dda | |
# ╠═880ba600-2d78-4c92-8986-265c82dbf692 | |
# ╠═bc707264-802c-4637-965d-2f4ce2d9729f | |
# ╠═fb456d3f-7ea9-4a5a-889d-a81b2713ef67 | |
# ╠═b3eed7f6-0f5b-4cce-9f76-11c8b9d368ee | |
# ╠═f100f892-2a52-4186-87ef-5856d2ab6481 | |
# ╠═3de72748-385c-42a9-ad44-f018f4de6e62 | |
# ╠═3befddb7-dec5-42c7-be58-40d01053d57a | |
# ╠═85209877-a4af-47fb-a208-d8d4ca6f022d | |
# ╠═4ed5afaa-3bb7-4c3b-9cc4-6a2e563d4368 | |
# ╠═9cb44d49-1c13-49b1-8c18-dc50f5252ecd | |
# ╠═66528c01-f6bd-483d-9a47-cfdfb5fc3be7 | |
# ╠═fad40869-4bb7-4611-843b-490e723be9da | |
# ╠═b89726c8-c774-4175-9f7d-be59b244b367 | |
# ╠═8eda9be0-d604-45ac-b3a1-3fc14f3c0103 | |
# ╠═847b357d-9c1a-4495-afd2-986e4a5ca37a | |
# ╠═72f3cd71-95a9-4a91-b568-6824891bacef | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment