🌲 Invert a binary tree! 🌲
Except with 3 catches:
- It must invert the keys ("bit-reversal permutation")
- It must be a dependency-free, pure recursive function
- It must have type
Bit -> Tree -> Tree
(i.e., a direct recursion with max 1 bit state)
- It is somehow NOT on the internet. (AFAIK)
- Humans can solve it. (I've done it in ~1h.)
- It requires reasoning. (My head hurts!)
- The solution is simple. (7 lines of code!)
- Obvious pre-requisite to automate CS research.
- Honestly, it would make me believe I'll be automated.
I claim no AI will EVER solve this problem. If you prove me wrong, HOC will grant you $10k!
- You must give it an approved prompt, nothing else.
- It must output a correct solution, passing all tests.
- You can use any software or AI model.
- You can let it "think" for as long as you want.
- You can propose a new prompt, as long as:
- It imposes equivalent restrictions.
- It clearly doesn't help the AI.
- Up to 1K tokens, all included.
- Common sense applies.
{-# OPTIONS --no-termination-check #-}
-- Let Tree be a Perfect Binary Tree:
data Nat : Set where
Z : Nat
S : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
data Bit : Set where
O : Bit
I : Bit
data Tree (A : Set) : Nat → Set where
N : ∀ {d} → Tree A d → Tree A d → Tree A (S d)
L : Nat → Tree A Z
-- Your goal is to implement an 'invert' function that performs a bit-reversal
-- permutation on a Tree, respecting the following limitations:
-- 1. You can NOT define or use any function other than 'invert'.
-- 2. You can NOT use any type not defined above (Nat, Bit and Tree).
-- 3. You can NOT use loops (but you can call 'invert' recursively).
-- 4. You can NOT use mutability. It must be a pure Agda function.
-- 5. You can use 1 bit of state (as an extra argument).
-- 6. You can use pattern-matching and constructors freely.
--
-- Example:
-- input = (N(N(N(L 0)(L 1))(N(L 2)(L 3)))(N(N(L 4)(L 5))(N(L 6)(L 7))))
-- output = (N(N(N(L 0)(L 4))(N(L 2)(L 6)))(N(N(L 1)(L 5))(N(L 3)(L 7))))
-- Because that's the bit-reversal permutation of the original tree.
--
-- Now, complete the program below, with a valid implementation of 'invert':
invert : ∀ {A d} → Bit → Tree A d → Tree A d
type Nat = number;
type Bit = false | true;
type Tree<A> = [Tree<A>, Tree<A>] | Nat;
// Your goal is to implement an 'invert' function that performs a bit-reversal
// permutation on a Tree, respecting the following limitations:
// 1. You can NOT define or use any function other than 'invert'.
// 2. You can NOT use any type not defined above (Nat, Bit and Tree).
// 3. You can NOT use loops (but you can call 'invert' recursively).
// 4. You can NOT use mutability. It must be a pure function.
// 5. You can NOT use primitive JS operators or functions.
// 6. You can use 1 bit of state (as an extra argument).
// 7. You can only use the operations allowed below.
//
// Operations allowed:
// - Destructing (`const [a,b] = value`)
// - Variables (`const x = value`)
// - Branching (`if (x) { ... } else { ... }`)
// - Recursion (`invert(_, _)')
// - `Array.isArray`
//
// All other operations are not allowed.
//
// Example:
// input = [[[[0,1],[2,3]],[[4,5],[6,7]]]]
// output = [[[[0,4],[2,6]],[[1,5],[3,7]]]]
// Because that's the bit-reversal permutation of the original tree.
//
// Now, complete the program below, with a valid implementation of 'invert':
function invert<A>(bit: Bit, tree: Tree<A>): Tree<A> {
...
}
// A test:
const tree: Tree<Nat> = [[[[0,1],[2,3]],[[4,5],[6,7]]],[[[8,9],[10,11]],[[12,13],[14,15]]]];
console.log(JSON.stringify(invert(true, tree)));
✨ If it can't invert a tree, it won't solve P=NP. ✨
@endolith agreed, though I get the impression that the author's intent may have been more along the lines of "No LLM will EVER solve this problem", which might be slightly more reasonable to say, because the claim is clearly that using current LLM architectures the problem wont be solved, not that there won't be some future architecture that can solve it. That's the way I interpreted it at least, but maybe @VictorTaelin can enlighten us a bit more on that.