Last active
July 5, 2024 15:02
-
-
Save WittmannF/60680723ed8dd0cb993051a7448f7805 to your computer and use it in GitHub Desktop.
Visualization of SVM Kernels Linear, RBF, Poly and Sigmoid on Python (Adapted from: http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.colors import ListedColormap | |
from sklearn.cross_validation import train_test_split | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.datasets import make_moons, make_circles, make_classification | |
from sklearn.svm import SVC | |
h = .02 # step size in the mesh | |
names = ["Linear SVM", "RBF SVM", "Poly SVM", "Sigmoid SVM"] | |
classifiers = [ | |
SVC(kernel="linear", C=0.025), | |
SVC(gamma=2, C=1), | |
SVC(kernel="poly", C=0.025), | |
SVC(kernel="sigmoid", gamma=2)] | |
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, | |
random_state=1, n_clusters_per_class=1) | |
rng = np.random.RandomState(2) | |
X += 2 * rng.uniform(size=X.shape) | |
linearly_separable = (X, y) | |
datasets = [make_moons(noise=0.3, random_state=0), | |
make_circles(noise=0.2, factor=0.5, random_state=1), | |
linearly_separable | |
] | |
figure = plt.figure(figsize=(27, 9)) | |
i = 1 | |
# iterate over datasets | |
for ds in datasets: | |
# preprocess dataset, split into training and test part | |
X, y = ds | |
X = StandardScaler().fit_transform(X) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) | |
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 | |
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 | |
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), | |
np.arange(y_min, y_max, h)) | |
# just plot the dataset first | |
cm = plt.cm.RdBu | |
cm_bright = ListedColormap(['#FF0000', '#0000FF']) | |
ax = plt.subplot(len(datasets), len(classifiers) + 1, i) | |
# Plot the training points | |
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) | |
# and testing points | |
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) | |
ax.set_xlim(xx.min(), xx.max()) | |
ax.set_ylim(yy.min(), yy.max()) | |
ax.set_xticks(()) | |
ax.set_yticks(()) | |
i += 1 | |
# iterate over classifiers | |
for name, clf in zip(names, classifiers): | |
ax = plt.subplot(len(datasets), len(classifiers) + 1, i) | |
clf.fit(X_train, y_train) | |
score = clf.score(X_test, y_test) | |
# Plot the decision boundary. For that, we will assign a color to each | |
# point in the mesh [x_min, m_max]x[y_min, y_max]. | |
if hasattr(clf, "decision_function"): | |
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) | |
else: | |
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] | |
# Put the result into a color plot | |
Z = Z.reshape(xx.shape) | |
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) | |
# Plot also the training points | |
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) | |
# and testing points | |
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, | |
alpha=0.6) | |
ax.set_xlim(xx.min(), xx.max()) | |
ax.set_ylim(yy.min(), yy.max()) | |
ax.set_xticks(()) | |
ax.set_yticks(()) | |
ax.set_title(name) | |
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), | |
size=15, horizontalalignment='right') | |
i += 1 | |
figure.subplots_adjust(left=.02, right=.98) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Nice!!