Created
August 14, 2010 22:34
-
-
Save aasmith/524788 to your computer and use it in GitHub Desktop.
black scholes & IV in javascript
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Returns probability of occuring below and above target price. */ | |
function probability(price, target, days, volatility) { | |
var p = price; | |
var q = target; | |
var t = days / 365; | |
var v = volatility; | |
var vt = v*Math.sqrt(t); | |
var lnpq = Math.log(q/p); | |
var d1 = lnpq / vt; | |
var y = Math.floor(1/(1+.2316419*Math.abs(d1))*100000)/100000; | |
var z = Math.floor(.3989423*Math.exp(-((d1*d1)/2))*100000)/100000; | |
var y5 = 1.330274*Math.pow(y,5); | |
var y4 = 1.821256*Math.pow(y,4); | |
var y3 = 1.781478*Math.pow(y,3); | |
var y2 = 0.356538*Math.pow(y,2); | |
var y1 = 0.3193815*y; | |
var x = 1-z*(y5-y4+y3-y2+y1); | |
x = Math.floor(x*100000)/100000; | |
if (d1<0) {x=1-x}; | |
var pbelow = Math.floor(x*1000)/10; | |
var pabove = Math.floor((1-x)*1000)/10; | |
return [pbelow,pabove]; | |
} | |
function probability_above(price, target, days, volatility) { | |
return probability(price, target, days, volatility)[1]; | |
} | |
function probability_below(price, target, days, volatility) { | |
return probability(price, target, days, volatility)[0]; | |
} | |
// JavaScript adopted from Bernt Arne Odegaard's Financial Numerical Recipes | |
// http://finance.bi.no/~bernt/gcc_prog/algoritms/algoritms/algoritms.html | |
// by Steve Derezinski, CXWeb, Inc. http://www.cxweb.com | |
// Copyright (C) 1998 Steve Derezinski, Bernt Arne Odegaard | |
// | |
// This program is free software; you can redistribute it and/or | |
// modify it under the terms of the GNU General Public License | |
// as published by the Free Software Foundation. | |
// This program is distributed in the hope that it will be useful, | |
// but WITHOUT ANY WARRANTY; without even the implied warranty of | |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
// GNU General Public License for more details. | |
// http://www.fsf.org/copyleft/gpl.html | |
function ndist(z) { | |
return (1.0/(Math.sqrt(2*Math.PI)))*Math.exp(-0.5*z); | |
//?? Math.exp(-0.5*z*z) | |
} | |
function N(z) { | |
b1 = 0.31938153; | |
b2 = -0.356563782; | |
b3 = 1.781477937; | |
b4 = -1.821255978; | |
b5 = 1.330274429; | |
p = 0.2316419; | |
c2 = 0.3989423; | |
a=Math.abs(z); | |
if (a>6.0) {return 1.0;} | |
t = 1.0/(1.0+a*p); | |
b = c2*Math.exp((-z)*(z/2.0)); | |
n = ((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t; | |
n = 1.0-b*n; | |
if (z < 0.0) {n = 1.0 - n;} | |
return n; | |
} | |
function fraction(z) { | |
// given a decimal number z, return a string with whole number + fractional string | |
// i.e. z = 4.375, return "4 3/8" | |
var whole = Math.floor(z); | |
var fract = z - whole; | |
var thirtytwos = Math.round(fract*32); | |
if (thirtytwos == 0) {return whole + " ";} //(if fraction is < 1/64) | |
if (thirtytwos == 32) {return whole + 1;} //(if fraction is > 63/64) | |
//32's non-trivial denominators: 2,4,8,16 | |
if (thirtytwos/16 == 1) { return whole + " 1/2";} | |
if (thirtytwos/8 == 1) { return whole + " 1/4";} | |
if (thirtytwos/8 == 3) { return whole + " 3/4";} | |
if (thirtytwos/4 == Math.floor(thirtytwos/4)) {return whole + " " + thirtytwos/4 + "/8";} | |
if (thirtytwos/2 == Math.floor(thirtytwos/2)) {return whole + " " + thirtytwos/2 + "/16";} | |
else return whole + " " + thirtytwos + "/32"; | |
} //end function | |
function black_scholes(call,S,X,r,v,t) { | |
// call = Boolean (to calc call, call=True, put: call=false) | |
// S = stock prics, X = strike price, r = no-risk interest rate | |
// v = volitility (1 std dev of S for (1 yr? 1 month?, you pick) | |
// t = time to maturity | |
// define some temp vars, to minimize function calls | |
var sqt = Math.sqrt(t); | |
var Nd2; //N(d2), used often | |
var nd1; //n(d1), also used often | |
var ert; //e(-rt), ditto | |
var delta; //The delta of the option | |
d1 = (Math.log(S/X) + r*t)/(v*sqt) + 0.5*(v*sqt); | |
d2 = d1 - (v*sqt); | |
if (call) { | |
delta = N(d1); | |
Nd2 = N(d2); | |
} else { //put | |
delta = -N(-d1); | |
Nd2 = -N(-d2); | |
} | |
ert = Math.exp(-r*t); | |
nd1 = ndist(d1); | |
gamma = nd1/(S*v*sqt); | |
vega = S*sqt*nd1; | |
theta = -(S*v*nd1)/(2*sqt) - r*X*ert*Nd2; | |
rho = X*t*ert*Nd2; | |
return ( S*delta-X*ert *Nd2); | |
} //end of black_scholes | |
function option_implied_volatility(call,S,X,r,t,o) { | |
// call = Boolean (to calc call, call=True, put: call=false) | |
// S = stock prics, X = strike price, r = no-risk interest rate | |
// t = time to maturity | |
// o = option price | |
// define some temp vars, to minimize function calls | |
sqt = Math.sqrt(t); | |
MAX_ITER = 100; | |
ACC = 0.0001; | |
sigma = (o/S)/(0.398*sqt); | |
for (i=0;i<MAX_ITER;i++) { | |
price = black_scholes(call,S,X,r,sigma,t); | |
diff = o-price; | |
if (Math.abs(diff) < ACC) return sigma; | |
d1 = (Math.log(S/X) + r*t)/(sigma*sqt) + 0.5*sigma*sqt; | |
vega = S*sqt*ndist(d1); | |
sigma = sigma+diff/vega; | |
} | |
return "Error, failed to converge"; | |
} //end of option_implied_volatility | |
function call_iv(s,x,r,t,o) { return option_implied_volatility(true,s,x,r/100,t/365,o) } | |
Getting out put wrong - Delta, gamma, theta value, can you please help me
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Very helpful