-
-
Save abesto/3476594 to your computer and use it in GitHub Desktop.
/* | |
A Tour of Go: page 44 | |
http://tour.golang.org/#44 | |
Exercise: Loops and Functions | |
As a simple way to play with functions and loops, implement the square root function using Newton's method. | |
In this case, Newton's method is to approximate Sqrt(x) by picking a starting point z and then repeating: z - (z*z - x) / (2 * z) | |
To begin with, just repeat that calculation 10 times and see how close you get to the answer for various values (1, 2, 3, ...). | |
Next, change the loop condition to stop once the value has stopped changing (or only changes by a very small delta). See if that's more or fewer iterations. How close are you to the math.Sqrt? | |
Hint: to declare and initialize a floating point value, give it floating point syntax or use a conversion: | |
z := float64(1) | |
z := 1.0 | |
*/ | |
package main | |
import ( | |
"fmt" | |
"math" | |
) | |
const DELTA = 0.0000001 | |
const INITIAL_Z = 100.0 | |
func Sqrt(x float64) (z float64) { | |
z = INITIAL_Z | |
step := func() float64 { | |
return z - (z*z - x) / (2 * z) | |
} | |
for zz := step(); math.Abs(zz - z) > DELTA | |
{ | |
z = zz | |
zz = step() | |
} | |
return | |
} | |
func main() { | |
fmt.Println(Sqrt(500)) | |
fmt.Println(math.Sqrt(500)) | |
} |
func Sqrt(x float64) float64 {
z :=1.0
temp := z
for i:=1; i < 10; i++ {
z= z - (zz-x)/(2z)
if diff:= math.Abs(z-temp); diff>0.000001{
temp=z
continue
}else{
break
}
}
return z
}
package main
import (
"fmt"
"math"
)
func Sqrt(x float64) float64 {
z := 1.0
// First guess
z -= (z*z - x) / (2*z)
// Iterate until change is very small
for zNew, delta := z, z; delta > 0.00000001; z = zNew {
zNew -= (zNew * zNew - x) / (2 * zNew)
delta = z - zNew
}
return z
}
func main() {
fmt.Println(Sqrt(2))
fmt.Println(math.Sqrt(2))
}
package main
import (
"fmt"
"math"
)
func Sqrt(x float64) (z float64) {
z = x
_z := z
for {
z -= (z*z-x)/(2*z)
if math.Abs(_z-z) == 0 { break }
_z = z;
}
return
}
func main() {
fmt.Printf("\n%v\n%v", Sqrt(500), math.Sqrt(500))
}
Seems like the initial value of Z should be a very high number to give a start difference in iterations as the number gets bigger. The smaller values are positive for Z:=100
package main
import (
"fmt"
"math"
)
const DELTA = 0.0000001
const INITIAL_Z = 100.0
func nSqrt(x float64) (z float64) {
z = INITIAL_Z
step := func() float64 {
return z - (z*z - x) / (2 * z)
}
i := 0
for zz := step(); math.Abs(zz - z) > DELTA
{
z = zz
fmt.Println("nSqrt iteration",i+1.0,"yields", z)
zz = step()
i++
}
return
}
func Sqrt(x float64) float64 {
z := 10000.0
lowestz := x
for i := 1.0; ; i++ {
z -= (zz - x) / (2z)
if z < lowestz {
if (lowestz - z ) < 1 {
return math.Round(lowestz)
}
lowestz = z
fmt.Println("Sqrt iteration",i, "yields", lowestz)
} else {
fmt.Println("Sqrt iteration",i, "yields", z)
}
}
return -1.0
}
func main() {
x := 88446264882046.0
fmt.Println(math.Sqrt(x),"is the Math.sqrt of",x)
fmt.Println(Sqrt(x),"is the sqrt of",x)
fmt.Println(nSqrt(x),"is the nSqrt of",x)
}
9.404587438162612e+06 is the Math.sqrt of 8.8446264882046e+13
Sqrt iteration 1 yields 4.4223182441023e+09
Sqrt iteration 2 yields 2.2111691220398436e+09
Sqrt iteration 3 yields 1.1056045609068596e+09
Sqrt iteration 4 yields 5.528422795037274e+08
Sqrt iteration 5 yields 2.7650113206446457e+08
Sqrt iteration 6 yields 1.384105043735723e+08
Sqrt iteration 7 yields 6.952475924039575e+07
Sqrt iteration 8 yields 3.5398457082733385e+07
Sqrt iteration 9 yields 1.8948524021609366e+07
Sqrt iteration 10 yields 1.1808118325449023e+07
Sqrt iteration 11 yields 9.64920561384981e+06
Sqrt iteration 12 yields 9.407688110605048e+06
Sqrt iteration 13 yields 9.404587949136695e+06
9.404588e+06 is the sqrt of 8.8446264882046e+13
nSqrt iteration 1 yields 4.4223132446023e+11
nSqrt iteration 2 yields 2.21115662330115e+11
nSqrt iteration 3 yields 1.1055783136505748e+11
nSqrt iteration 4 yields 5.527891608252874e+10
nSqrt iteration 5 yields 2.763945884126436e+10
nSqrt iteration 6 yields 1.3819731020632118e+10
nSqrt iteration 7 yields 6.909868710315565e+09
nSqrt iteration 8 yields 3.454940755153831e+09
nSqrt iteration 9 yields 1.7274831775453014e+09
nSqrt iteration 10 yields 8.637671885197371e+08
nSqrt iteration 11 yields 4.3193479223662525e+08
nSqrt iteration 12 yields 2.1606977993465686e+08
nSqrt iteration 13 yields 1.0823956057167856e+08
nSqrt iteration 14 yields 5.4528347469662406e+07
nSqrt iteration 15 yields 2.807518552031814e+07
nSqrt iteration 16 yields 1.5612760710839875e+07
nSqrt iteration 17 yields 1.063887956936863e+07
nSqrt iteration 18 yields 9.476186945198271e+06
nSqrt iteration 19 yields 9.404857931423109e+06
nSqrt iteration 20 yields 9.404587442052443e+06
nSqrt iteration 21 yields 9.404587438162612e+06
9.404587438162612e+06 is the nSqrt of 8.8446264882046e+13
Hmm. Folks, I don't get it. z
and zz
? Why? One variable in loop is enough.
package main
import (
"fmt"
"math"
)
func Sqrt(x float64) (float64) {
z := 100.0
for math.Abs(z - math.Sqrt(x)) > 0.000000000001 {
z = (z - (z * z - x) / (2 * z))
}
return z
}
func main() {
n := 456789
fmt.Println(Sqrt(n), math.Sqrt(n))
}
um.. does this make sense?
package main
import (
"fmt"
"math"
)
var DELTA = 0.0001
func Sqrt(x float64) float64 {
z := 1.0
for ; math.Abs(z*z-x) > DELTA; z -= (z*z - x) / (z * 2) {
}
return z
}
func main() {
fmt.Println(Sqrt(2))
}
Excellent solution!
package main
import (
"fmt"
"math"
)
const Delta = 1e-10
func sqrt(x float64) float64 {
z, old := 1.0, 1.1
for math.Abs(old-z) > Delta {
old = z
z = z - (zz-x)/(2z)
}
return z
}
func main() {
fmt.Println(sqrt(2))
}
um.. does this make sense?
package main import ( "fmt" "math" ) var DELTA = 0.0001 func Sqrt(x float64) float64 { z := 1.0 for ; math.Abs(z*z-x) > DELTA; z -= (z*z - x) / (z * 2) { } return z } func main() { fmt.Println(Sqrt(2)) }
very sweet code.
package main
import (
"fmt"
"math"
)
func Sqrt(x float64) float64 {
var zi float64 = x/2
delta := 0.00000001
z := zi - (zi*zi - x) / (2*zi)
for math.Abs(z-zi) > delta {
zi = z
z -= (zi*zi - x) / (2*zi)
fmt.Printf("%v, %v\n", zi, z)
}
return z
}
func main() {
fmt.Println(Sqrt(0.5))
fmt.Println("real value = " + fmt.Sprint(math.Sqrt(0.5)))
}
func Sqrt(x float64) float64 {
z := 1.0
epsilon := 1e-6
lim := 10
for i := 0; i < lim && math.Abs(z*z-x) > epsilon; i++ {
z -= (z*z - x) / (2 * z)
}
return z
}
z := 1.0
// First guess
z -= (zz - x) / (2z)
// Iterate until change is very small
for zNew, delta := z, z; delta > 0.00000001; z = zNew {
zNew -= (zNew * zNew - x) / (2 * zNew)
delta = z - zNew
}
return z
amazinggg
@awm086 the
z
value won't alternate between negative and positive, but the delta might. There is no guaranty that az
value calculated in this iteration will alway be larger than in the previous iteration.Obvious example of this would be providing an
x
value that is the same or smaller thanz
, the loop will exit immediately.