Created
July 16, 2023 09:09
-
-
Save abhishekkrthakur/82a09c9428d48a343c5911ffb701c1d4 to your computer and use it in GitHub Desktop.
Train LLMs in 50 lines of code. This is a reference code for YouTube tutorial: https://www.youtube.com/watch?v=JNMVulH7fCo&ab_channel=AbhishekThakur
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from datasets import load_dataset | |
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments | |
from trl import SFTTrainer | |
def train(): | |
train_dataset = load_dataset("tatsu-lab/alpaca", split="train") | |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
"Salesforce/xgen-7b-8k-base", load_in_4bit=True, torch_dtype=torch.float16, device_map="auto" | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
model = prepare_model_for_int8_training(model) | |
peft_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM") | |
model = get_peft_model(model, peft_config) | |
training_args = TrainingArguments( | |
output_dir="xgen-7b-tuned-alpaca-l1", | |
per_device_train_batch_size=4, | |
optim="adamw_torch", | |
logging_steps=100, | |
learning_rate=2e-4, | |
fp16=True, | |
warmup_ratio=0.1, | |
lr_scheduler_type="linear", | |
num_train_epochs=1, | |
save_strategy="epoch", | |
push_to_hub=True, | |
) | |
trainer = SFTTrainer( | |
model=model, | |
train_dataset=train_dataset, | |
dataset_text_field="text", | |
max_seq_length=1024, | |
tokenizer=tokenizer, | |
args=training_args, | |
packing=True, | |
peft_config=peft_config, | |
) | |
trainer.train() | |
trainer.push_to_hub() | |
if __name__ == "__main__": | |
train() |
seems like an issue with bitsandbytes. could you please open an issue on bitsandbytes repo?
I also have this same issue using: transformers: 4.30.2
bitsandbytes: 0.40.0. Have created bitsandbytes-foundation/bitsandbytes#600
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi Abhishek,
I am running the same code in colab notebook, I am getting error :
│ │
│ /usr/local/lib/python3.10/dist-packages/peft/tuners/lora.py:565 in forward │
│ │
│ 562 │ │ │ │ self.unmerge() │
│ 563 │ │ │ result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self. │
│ 564 │ │ elif self.r[self.active_adapter] > 0 and not self.merged: │
│ ❱ 565 │ │ │ result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self. │
│ 566 │ │ │ │
│ 567 │ │ │ x = x.to(self.lora_A[self.active_adapter].weight.dtype) │
│ 568 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: mat1 and mat2 shapes cannot be multiplied (4096x4096 and 1x8388608)
The same error is encountered when i run the fine-tuning by autotrain command, please help for the same ?