Created
          July 16, 2023 09:09 
        
      - 
      
- 
        Save abhishekkrthakur/82a09c9428d48a343c5911ffb701c1d4 to your computer and use it in GitHub Desktop. 
    Train LLMs in 50 lines of code. This is a reference code for YouTube tutorial: https://www.youtube.com/watch?v=JNMVulH7fCo&ab_channel=AbhishekThakur
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import torch | |
| from datasets import load_dataset | |
| from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments | |
| from trl import SFTTrainer | |
| def train(): | |
| train_dataset = load_dataset("tatsu-lab/alpaca", split="train") | |
| tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "Salesforce/xgen-7b-8k-base", load_in_4bit=True, torch_dtype=torch.float16, device_map="auto" | |
| ) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| model = prepare_model_for_int8_training(model) | |
| peft_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM") | |
| model = get_peft_model(model, peft_config) | |
| training_args = TrainingArguments( | |
| output_dir="xgen-7b-tuned-alpaca-l1", | |
| per_device_train_batch_size=4, | |
| optim="adamw_torch", | |
| logging_steps=100, | |
| learning_rate=2e-4, | |
| fp16=True, | |
| warmup_ratio=0.1, | |
| lr_scheduler_type="linear", | |
| num_train_epochs=1, | |
| save_strategy="epoch", | |
| push_to_hub=True, | |
| ) | |
| trainer = SFTTrainer( | |
| model=model, | |
| train_dataset=train_dataset, | |
| dataset_text_field="text", | |
| max_seq_length=1024, | |
| tokenizer=tokenizer, | |
| args=training_args, | |
| packing=True, | |
| peft_config=peft_config, | |
| ) | |
| trainer.train() | |
| trainer.push_to_hub() | |
| if __name__ == "__main__": | |
| train() | 
I also have this same issue using: transformers: 4.30.2
bitsandbytes: 0.40.0. Have created bitsandbytes-foundation/bitsandbytes#600
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment
  
            
seems like an issue with bitsandbytes. could you please open an issue on bitsandbytes repo?